. The major functions of Indiana University Simon Cancer Center (IUSCC) administration are to: coordinate strategic planning;stimulate and support transdisciplinary Research Programs;and provide administrative oversight for the shared resource facilities. In addition, IUSCC administration is responsible for providing support in the following key areas: pre- and post-award management for grants and contracts;financial management of university and foundation accounts;development and maintenance of the IUSCC Webpages and databases;coordination of communication to IUSCC members;and human resource management of IUSCC staff. Research Programs are supported through coordination of- and attendance at meetings, pilot project announcements, administration of the IUSCC Translational Research Acceleration Coordination (ITRAC) process, dissemination of external funding announcements, and coordination of the IUSCC Seminar Series. Program Leaders are also provided discretionary funding of $25,000 per year to offset programmatic expenses not covered above, such as retreats and consultants. Additionally, the IUSCC development and administration staff work with Senior and Program Leaders to develop fundraising strategies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA082709-15
Application #
8781141
Study Section
Subcommittee G - Education (NCI)
Project Start
1999-09-22
Project End
2019-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
15
Fiscal Year
2014
Total Cost
$108,405
Indirect Cost
$42,037
Name
Indiana University-Purdue University at Indianapolis
Department
Type
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Liu, Yunhua; Xu, Hanchen; Van der Jeught, Kevin et al. (2018) Somatic mutation of the cohesin complex subunit confers therapeutic vulnerabilities in cancer. J Clin Invest 128:2951-2965
Pin, Fabrizio; Barreto, Rafael; Kitase, Yukiko et al. (2018) Growth of ovarian cancer xenografts causes loss of muscle and bone mass: a new model for the study of cancer cachexia. J Cachexia Sarcopenia Muscle 9:685-700
Robertson, Michael J; Stamatkin, Christopher W; Pelloso, David et al. (2018) A Dose-escalation Study of Recombinant Human Interleukin-18 in Combination With Ofatumumab After Autologous Peripheral Blood Stem Cell Transplantation for Lymphoma. J Immunother 41:151-157
Huang, Xinxin; Guo, Bin; Liu, Sheng et al. (2018) Neutralizing negative epigenetic regulation by HDAC5 enhances human haematopoietic stem cell homing and engraftment. Nat Commun 9:2741
Serratore, Nina D; Baker, Kortany M; Macadlo, Lauren A et al. (2018) A Novel Sterol-Signaling Pathway Governs Azole Antifungal Drug Resistance and Hypoxic Gene Repression in Saccharomyces cerevisiae. Genetics 208:1037-1055
Hoggatt, Jonathan; Singh, Pratibha; Tate, Tiffany A et al. (2018) Rapid Mobilization Reveals a Highly Engraftable Hematopoietic Stem Cell. Cell 172:191-204.e10
Filley, Anna; Henriquez, Mario; Bhowmik, Tanmoy et al. (2018) Immunologic and gene expression profiles of spontaneous canine oligodendrogliomas. J Neurooncol 137:469-479
Sishtla, Kamakshi; Pitt, Natalie; Shadmand, Mehdi et al. (2018) Observations on spontaneous tumor formation in mice overexpressing mitotic kinesin Kif14. Sci Rep 8:16152
Koh, Byunghee; Abdul Qayum, Amina; Srivastava, Rajneesh et al. (2018) A conserved enhancer regulates Il9 expression in multiple lineages. Nat Commun 9:4803
Reese, Michael J; Knapp, Deborah W; Anderson, Kimberly M et al. (2018) In vitro effect of chlorambucil on human glioma cell lines (SF767 and U87-MG), and human microvascular endothelial cell (HMVEC) and endothelial progenitor cells (ECFCs), in the context of plasma chlorambucil concentrations in tumor-bearing dogs. PLoS One 13:e0203517

Showing the most recent 10 out of 256 publications