Combinatorial library methods not only offer great potential for facilitating the drug discovery process but also provide powerful tools for basic research in various disciplines. These methods enable investigators to generate large number of chemical compounds that can be used as valuable sources for the discovery of drug leads, molecular imaging agents, and capturing agents for molecular markers. In the past five years, the Combinatorial Chemistry Shared Resource (CCSR) has been assisting many cancer center investigators in the application of combinatorial chemistry to their research. These efforts have resulted in the submission and funding of several extramural grants, peer-reviewed publications. The CCSR provides high-number, low-cost library screening for novel compounds using one-bead-one-compound and one-bead-2-compounds methods, and a variety of on-bead and solution-phase functional assays. To expand the scope of the chemistry services provided by the CCSR, we have now added two new technology platforms that are useful to many cancer center members. The first technology is the use of amphiphilic telodendrimers to nanoformulate hydrophobic drugs for in vivo applications. The second technology is the development of Genetically Encoded Small Illuminants (GESIs) as novel reporters for cellular imaging of protein functions.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA093373-18
Application #
9993294
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
18
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Dou, John; Schmidt, Rebecca J; Benke, Kelly S et al. (2018) Cord blood buffy coat DNA methylation is comparable to whole cord blood methylation. Epigenetics 13:108-116
Couto, K M; Moore, P F; Zwingenberger, A L et al. (2018) Clinical characteristics and outcome in dogs with small cell T-cell intestinal lymphoma. Vet Comp Oncol 16:337-343
Xue, Xiangdong; Huang, Yee; Wang, Xinshuai et al. (2018) Self-indicating, fully active pharmaceutical ingredients nanoparticles (FAPIN) for multimodal imaging guided trimodality cancer therapy. Biomaterials 161:203-215
Ho, Pui Yan; Duan, Zhijian; Batra, Neelu et al. (2018) Bioengineered Noncoding RNAs Selectively Change Cellular miRNome Profiles for Cancer Therapy. J Pharmacol Exp Ther 365:494-506
Zuo, Yang; Qi, Jinyi; Wang, Guobao (2018) Relative Patlak plot for dynamic PET parametric imaging without the need for early-time input function. Phys Med Biol 63:165004
McGee, Heather M; Daly, Megan E; Azghadi, Sohelia et al. (2018) Stereotactic Ablative Radiation Therapy Induces Systemic Differences in Peripheral Blood Immunophenotype Dependent on Irradiated Site. Int J Radiat Oncol Biol Phys 101:1259-1270
Klapheke, Amy; Yap, Stanley A; Pan, Kevin et al. (2018) Sociodemographic disparities in chemotherapy treatment and impact on survival among patients with metastatic bladder cancer. Urol Oncol 36:308.e19-308.e25
Pol, Arjan; Renkema, G Herma; Tangerman, Albert et al. (2018) Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis. Nat Genet 50:120-129
Wang, Yuru; Park, SeHee; Beal, Peter A (2018) Selective Recognition of RNA Substrates by ADAR Deaminase Domains. Biochemistry 57:1640-1651
Campbell, Mel; Watanabe, Tadashi; Nakano, Kazushi et al. (2018) KSHV episomes reveal dynamic chromatin loop formation with domain-specific gene regulation. Nat Commun 9:49

Showing the most recent 10 out of 836 publications