The overall mission of the Proteomics Shared Service (PSS) is to provide members of the University of Maryland Marlene and Stewart Greenebaum Cancer Center (UMGCC) with access to state-of-the-art mass spectrometry-based qualitative and quantitative protein analysis technologies, PSS performs routine and specialized analysis of proteins and peptides and offers a wide range of analytical capabilities to support the needs of UMGCC investigators and other researchers within and outside of the University of Maryland-Baltimore (UMB). Through seminars and workshops, PSS educates the UMGCC research community about the latest conceptual and technological advances in proteomics. In addition, PSS provides to UMGCC members and their lab personnel hands-on training in mass-spectrometry-based technologies. PSS also provides advice and guidance to other UMB departments and centers interested in developing their own proteomic capabilities, with the goal of minimizing duplication of equipment and increasing the range of technologies available on the UMB campus.

Public Health Relevance

The central goal of the proteomic approach is to determine quantitatively global changes in protein expression under various physiological conditions. The successful completion of a project potentially could lead to the discovery of new prognostic and diagnostic indications and therapeutic targets and early diagnostics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA134274-04
Application #
8340248
Study Section
Subcommittee G - Education (NCI)
Project Start
2011-08-24
Project End
2016-07-31
Budget Start
2011-08-24
Budget End
2012-07-31
Support Year
4
Fiscal Year
2011
Total Cost
$67,092
Indirect Cost
Name
University of Maryland Baltimore
Department
Type
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Wang, Junxiang; Zhao, Liang; Ye, Yanfang et al. (2018) Adverse event detection by integrating twitter data and VAERS. J Biomed Semantics 9:19
Furusawa, Aki; Reiser, John; Sadashivaiah, Kavitha et al. (2018) Eomesodermin Increases Survival and IL-2 Responsiveness of Tumor-specific CD8+ T Cells in an Adoptive Transfer Model of Cancer Immunotherapy. J Immunother 41:53-63
Nathenson, Michael J; Conley, Anthony P; Sausville, Edward (2018) Immunotherapy: A New (and Old) Approach to Treatment of Soft Tissue and Bone Sarcomas. Oncologist 23:71-83
Wang, Lei; Felts, Sara J; Van Keulen, Virginia P et al. (2018) Exploring the effect of library preparation on RNA sequencing experiments. Genomics :
Nathenson, Michael J; Barysauskas, Constance M; Nathenson, Robert A et al. (2018) Surgical resection for recurrent retroperitoneal leiomyosarcoma and liposarcoma. World J Surg Oncol 16:203
Sallmyr, Annahita; Tomkinson, Alan E (2018) Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem 293:10536-10546
Kerr, Candace; Adhikary, Gautam; Grun, Daniel et al. (2018) Combination cisplatin and sulforaphane treatment reduces proliferation, invasion, and tumor formation in epidermal squamous cell carcinoma. Mol Carcinog 57:3-11
Connolly, Sean; Quasi-Woode, Devona; Waldron, Laura et al. (2018) Calcineurin Regulatory Subunit Calcium-Binding Domains Differentially Contribute to Calcineurin Signaling in Saccharomyces cerevisiae. Genetics 209:801-813
Pauza, C David; Liou, Mei-Ling; Lahusen, Tyler et al. (2018) Gamma Delta T Cell Therapy for Cancer: It Is Good to be Local. Front Immunol 9:1305
Wang, Lei; Felts, Sara J; Van Keulen, Virginia P et al. (2018) Integrative Genome-Wide Analysis of Long Noncoding RNAs in Diverse Immune Cell Types of Melanoma Patients. Cancer Res 78:4411-4423

Showing the most recent 10 out of 257 publications