The overall objective of the Cell Function Analysis Core at the University of Washington Diabetes Research Center is to provide affiliates with analyses of glucose metabolism, mitochondrial function and intracellular signaling components critically important in diabetes, obesity and related disorders. To achieve this goal, the Core aims to: (1) Provide real time functional analysis in flow culture systems of tissues and cell types important in diabetes research. These have been expanded from just islets, to include retina, skeletal muscle, stem cells, macrophages, lymphocytes, adipocytes, endothelial cells, neuronal cells and hepatocytes;(2) Provide static assessment of cellular metabolism and function;(3) Isolate and culture primary tissue from rodents including islets and islet cells for subsequent morphological and functional characterization. Further, to procure human and monkey islets for the same purposes;and (4) Offer training and consultation to affiliates, their trainees and staff as well as develop new analytical tools requested by affiliates to support their studies of the metabolic regulation of cell function. The expansion of services provided during the current funding cycle has allowed the Core to better serve the needs of the Center's research base. As diabetes perturbs cellular metabolism and signaling in a variety of;cell types, the services of the Cell Function Analysis Core are, and will continue to be, of great value to Diabetes Research Center affiliate investigators who wish to study these aspects in order to gain a better understanding of physiology and disease pathophysiology.

Public Health Relevance

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK017047-37
Application #
8441164
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O2))
Project Start
Project End
Budget Start
2013-03-13
Budget End
2013-11-30
Support Year
37
Fiscal Year
2013
Total Cost
$174,181
Indirect Cost
$73,740
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Kikuchi, Shinsuke; Chen, Lihua; Xiong, Kevin et al. (2018) Smooth muscle cells of human veins show an increased response to injury at valve sites. J Vasc Surg 67:1556-1570.e9
Erickson, Michelle A; Banks, William A (2018) Neuroimmune Axes of the Blood-Brain Barriers and Blood-Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacol Rev 70:278-314
Auerbach, Brandon J; Dibey, Sepideh; Vallila-Buchman, Petra et al. (2018) Review of 100% Fruit Juice and Chronic Health Conditions: Implications for Sugar-Sweetened Beverage Policy. Adv Nutr 9:78-85
Wang, Yang; Sosinowski, Tomasz; Novikov, Andrey et al. (2018) C-terminal modification of the insulin B:11-23 peptide creates superagonists in mouse and human type 1 diabetes. Proc Natl Acad Sci U S A 115:162-167
Solan, Joell L; Lampe, Paul D (2018) Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics. Biochim Biophys Acta Biomembr 1860:83-90
Howard, Barbara V; Aragaki, Aaron K; Tinker, Lesley F et al. (2018) A Low-Fat Dietary Pattern and Diabetes: A Secondary Analysis From the Women's Health Initiative Dietary Modification Trial. Diabetes Care 41:680-687
Parilla, Jacqueline H; Hull, Rebecca L; Zraika, Sakeneh (2018) Neprilysin Deficiency Is Associated With Expansion of Islet ?-Cell Mass in High Fat-Fed Mice. J Histochem Cytochem 66:523-530
Writing Group for the TRIGR Study Group; Knip, Mikael; Ã…kerblom, Hans K et al. (2018) Effect of Hydrolyzed Infant Formula vs Conventional Formula on Risk of Type 1 Diabetes: The TRIGR Randomized Clinical Trial. JAMA 319:38-48
Kuzma, Jessica N; Hagman, Derek K; Cromer, Gail et al. (2018) Intra-individual variation in markers of intestinal permeability and adipose tissue inflammation in healthy normal weight to obese adults. Cancer Epidemiol Biomarkers Prev :
Ettinger, Ruth A; Liberman, Joseph A; Gunasekera, Devi et al. (2018) FVIII proteins with a modified immunodominant T-cell epitope exhibit reduced immunogenicity and normal FVIII activity. Blood Adv 2:309-322

Showing the most recent 10 out of 1296 publications