The Islet Cell Biology Core supports the overall mission of the Penn DRC to prevent, treat, and cure diabetes. Reduced islet beta-cell numbers and function underlie the progression of the full spectrum of diabetes. It is therefore essential for all laboratories investigating causes and potential cures for diabetes to be able to study islet function in relation to their specific models and molecules of interest. The objective of the Islet Cell Biology Core is to provide DRC members with state of the art support including experiment design, islet isolation, and performance of and/or training in an expansive range of assays for physiological and morphological assessment of pancreatic islet function and growth. The Core offers a range of services that generally begins with Islet isolation from rodent models and may be followed by a period of culture by the core. Islet hormone secretion can be assessed in static """"""""batch"""""""" incubations or by more informative perifusions that require larger numbers of islets and expensive immunoassays. Depending on the needs and capacity of the investigator laboratory, the core may provide these services in an ongoing manner or it may provide critical training to allow the investigator laboratory to perform the experiments independently over time. The core also has the advanced technology and expertise to perform islet and cell fluorescence imaging (Ca{i}[2+]), perifusion with respirometry, and """"""""closed"""""""" respirometry experiments for our investigators. A major advance of the previous grant cycle was an enhanced focus on human islet physiology, capitalizing on the unique strengths of the Penn DRC environment in the area of human islet procurement. By providing unique services and expertise, and continually developing state-of-the art analysis of islet structure and function, the Islet Cell Biology Core remains a critical and valuable component of the Penn DRC.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK019525-38
Application #
8638930
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
38
Fiscal Year
2014
Total Cost
$187,419
Indirect Cost
$71,367
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Correnti, Jason M; Gottshall, Lauren; Lin, Annie et al. (2018) Ethanol and C2 ceramide activate fatty acid oxidation in human hepatoma cells. Sci Rep 8:12923
Williams, Bianca; Correnti, Jason; Oranu, Amanke et al. (2018) A novel role for ceramide synthase 6 in mouse and human alcoholic steatosis. FASEB J 32:130-142
Qiu, Chengxiang; Huang, Shizheng; Park, Jihwan et al. (2018) Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat Med 24:1721-1731
Cohen, Daniel M; Lim, Hee-Woong; Won, Kyoung-Jae et al. (2018) Shared nucleotide flanks confer transcriptional competency to bZip core motifs. Nucleic Acids Res 46:8371-8384
Davila, Antonio; Liu, Ling; Chellappa, Karthikeyani et al. (2018) Nicotinamide adenine dinucleotide is transported into mammalian mitochondria. Elife 7:
Abu-Gazala, Samir; Horwitz, Elad; Ben-Haroush Schyr, Rachel et al. (2018) Sleeve Gastrectomy Improves Glycemia Independent of Weight Loss by Restoring Hepatic Insulin Sensitivity. Diabetes 67:1079-1085
Zhao, Juanjuan; Lupino, Katherine; Wilkins, Benjamin J et al. (2018) Genomic integration of ERR?-HNF1? regulates renal bioenergetics and prevents chronic kidney disease. Proc Natl Acad Sci U S A 115:E4910-E4919
Pickett-Blakely, Octavia; Young, Kimberly; Carr, Rotonya M (2018) Micronutrients in Nonalcoholic Fatty Liver Disease Pathogenesis. Cell Mol Gastroenterol Hepatol 6:451-462
Kameswaran, Vasumathi; Golson, Maria L; Ramos-Rodríguez, Mireia et al. (2018) The Dysregulation of the DLK1-MEG3 Locus in Islets From Patients With Type 2 Diabetes Is Mimicked by Targeted Epimutation of Its Promoter With TALE-DNMT Constructs. Diabetes 67:1807-1815
Huang, Chen; Walker, Emily M; Dadi, Prasanna K et al. (2018) Synaptotagmin 4 Regulates Pancreatic ? Cell Maturation by Modulating the Ca2+ Sensitivity of Insulin Secretion Vesicles. Dev Cell 45:347-361.e5

Showing the most recent 10 out of 720 publications