- Molecular Genetics Core Given the value of model organisms and molecular genetic tools for the study of diabetes and its co- morbidities, the Molecular Genetics Core (MGC) is designed to aid diabetes researchers in the development of novel rodent models and molecular tools to determine the cellular and molecular mechanisms contributing to diabetes. Established in 2015, the MGC is a fee-for-service core that facilitates the application of molecular genetic methods to diabetes-related research. Specifically, the MGC (1) designs and produces genetically- modified rodent models (using CRISPR/Cas9) for use in diabetes-related research; (2) designs and produces AAV vectors for use in diabetes research; (3) produces and provides specialty viral reagents for use in diabetes research; and (4) provides advice and training in the use of these technologies to members of MDRC laboratories. The MG Core also owns and maintains several pieces of shared equipment for the use of MDRC members located at different sites around the UM medical campus. While CRISPR/Cas9 technology has dramatically increased the speed and decreased the cost at which such models can be generated, the pace at which this new technology continues to evolve prevents many diabetes researchers from taking full advantage of its potential. The MGC fills this gap by using its expertise and personnel to design and construct CRISPR/Cas9 targeting reagents, collaborate with the UM Transgenic Core to test these reagents in embryos and produce founder mice, and identify founders for transfer (along with genotyping protocols) to the MDRC investigator. For the generation of viral reagents, the MGC designs and produces any necessary constructs, which are packaged into viruses by the UM Viral Vector Core. With input from MDRC members and the MGC advisory committee, the MGC also identifies and develops new technologies (viral and genetic) in support of the research programs of MDRC members.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020572-43
Application #
9851845
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2019-12-01
Budget End
2020-11-30
Support Year
43
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Larkin, Daniel F P (2018) Letter to the Editor in Response to Kim et al, ""Effect of Histocompatibility Y Antigen Matching on Graft Survival in Primary Penetrating Keratoplasty."" Cornea 37:e29
Peck, Bailey C E; Seeley, Randy J (2018) How does 'metabolic surgery' work its magic? New evidence for gut microbiota. Curr Opin Endocrinol Diabetes Obes 25:81-86
Mitok, Kelly A; Freiberger, Elyse C; Schueler, Kathryn L et al. (2018) Islet proteomics reveals genetic variation in dopamine production resulting in altered insulin secretion. J Biol Chem 293:5860-5877
Rupp, Alan C; Allison, Margaret B; Jones, Justin C et al. (2018) Specific subpopulations of hypothalamic leptin receptor-expressing neurons mediate the effects of early developmental leptin receptor deletion on energy balance. Mol Metab :
Akama, Takeshi; Chun, Tae-Hwa (2018) Transcription factor 21 (TCF21) promotes proinflammatory interleukin 6 expression and extracellular matrix remodeling in visceral adipose stem cells. J Biol Chem 293:6603-6610
Peyrot, Mark; Dreon, Darlene; Zraick, Vivien et al. (2018) Patient Perceptions and Preferences for a Mealtime Insulin Delivery Patch. Diabetes Ther 9:297-307
Guo, Huan; Sun, Jinhong; Li, Xin et al. (2018) Positive charge in the n-region of the signal peptide contributes to efficient post-translational translocation of small secretory preproteins. J Biol Chem 293:1899-1907
Flannick, Jason (see original citation for additional authors) (2018) Erratum: Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Sci Data 5:180002
Huang, Chao; Fisher, Kiera P; Hammer, Sandra S et al. (2018) Plasma Exosomes Contribute to Microvascular Damage in Diabetic Retinopathy by Activating the Classical Complement Pathway. Diabetes 67:1639-1649
Ge, C; Mohamed, F; Binrayes, A et al. (2018) Selective Role of Discoidin Domain Receptor 2 in Murine Temporomandibular Joint Development and Aging. J Dent Res 97:321-328

Showing the most recent 10 out of 1823 publications