The Islet Cell Biology Core provides services and hands-on training to independently funded investigators in the isolation and functional characterization of pancreatic islets from normal and diabetic humans and mice. It also maintains a repository of insulinoma cell lines as well as other endocrine cell lines. The primary emphasis of the Core is to facilitate studies of primary islet cells, and it has developed many unique tools and techniques for carrying such studies including novel animals models, biophysical methods and a library of adenovirus-based expression constructs for studying beta-cell function. The long-range objectives and goals of the Islet Cell Biology Core are to provide state-of-the-art technology and know-how to understanding the beta cell in health and disease. It has the following Specific Aims and Objectives: Provide advice, service and training in the isolation of pancreatic islets from normal and diabetic mice and humans;Provide insulinoma and other endocrine cell lines;Provide advice, service and training in the characterization of mouse and human pancreatic islets and beta cell (insulin biosynthesis and secretion;biophysical methods for studying islet and beta-cell function (e.g. calcium imaging, electrophysiology, total internal reflection fluorescent microscopy);biochemical methods for studying beta-cell function (e.g. phosphorylation, proliferation, apoptosis);and immunohistochemical analysis of pancreatic islets) and Provide advice, service and training on the use of adenovirus-based expression constructs to study protein function in beta cells and other cell types in vitro and in vivo. Drs. Philipson, Rhodes and Witkowski are Directors of this Core. They will be advised by experts in pancreatic islets and beta cells (Prince and Steiner), cellular and physiological imaging (Bindokas, Chen and Glick), ion channels (Hanck and Nelson), spectroscopy (Halpern and Scherer) and cell dynamics (Dinner) to ensure that the Core services are at the forefront of technology and thus able to anticipate and quickly repond to users needs.

Public Health Relevance

The Islet Cell Biology Core provides advice, services and hands-on training in the isolation of pancreatic islets and studies of their function. It provides a foundation for studies of beta cell and islet biology that are fundamental to understanding the pathophysiology of diabetes.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O2))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Chicago
United States
Zip Code
RISE Consortium (2018) Impact of Insulin and Metformin Versus Metformin Alone on ?-Cell Function in Youth With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care 41:1717-1725
Letourneau, Lisa R; Greeley, Siri Atma W (2018) Congenital forms of diabetes: the beta-cell and beyond. Curr Opin Genet Dev 50:25-34
Vierra, Nicholas C; Dickerson, Matthew T; Philipson, Louis H et al. (2018) Simultaneous Real-Time Measurement of the ?-Cell Membrane Potential and Ca2+ Influx to Assess the Role of Potassium Channels on ?-Cell Function. Methods Mol Biol 1684:73-84
Xiao, Xiangwei; Guo, Ping; Shiota, Chiyo et al. (2018) Endogenous Reprogramming of Alpha Cells into Beta Cells, Induced by Viral Gene Therapy, Reverses Autoimmune Diabetes. Cell Stem Cell 22:78-90.e4
Lanning, Monica S; Carmody, David; Szczerbi?ski, ?ukasz et al. (2018) Hypoglycemia in sulfonylurea-treated KCNJ11-neonatal diabetes: Mild-moderate symptomatic episodes occur infrequently but none involving unconsciousness or seizures. Pediatr Diabetes 19:393-397
Weidemann, Benjamin J; Ramsey, Kathryn Moynihan; Bass, Joseph (2018) A day in the life of chromatin: how enhancer-promoter loops shape daily behavior. Genes Dev 32:321-323
Harris, Anastasia G; Letourneau, Lisa R; Greeley, Siri Atma W (2018) Monogenic diabetes: the impact of making the right diagnosis. Curr Opin Pediatr 30:558-567
Hwang, Jessica L; Park, Soo-Young; Ye, Honggang et al. (2018) FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr Diabetes 19:388-392
Feng, Jianyuan; Hajizadeh, Iman; Yu, Xia et al. (2018) Multi-level Supervision and Modification of Artificial Pancreas Control System. Comput Chem Eng 112:57-69
Letourneau, Lisa R; Carmody, David; Philipson, Louis H et al. (2018) Early Intensive Insulin Use May Preserve ?-Cell Function in Neonatal Diabetes Due to Mutations in the Proinsulin Gene. J Endocr Soc 2:1-8

Showing the most recent 10 out of 298 publications