The Research Base of the CURE: Digestive Diseases Research Core Center (CURE:DDRCC) is composed of a cohesive group of physicians and basic scientists with strong independent peer-reviewed grant-supported research programs in the biology of the gut, with special emphasis on regulation of mucosal cell function, enteric neuroscience and signal transduction mechanisms. CURE, created in 1974, has grown and evolved into a broadly based gastrointestinal research organization with multiple affiliations, principally the VA and UCLA. Since 1989, a fundamental component of CURE has been the NIDDK-supported CURE: DDRCC. The research emphasis of the Center is acquisition of new knowledge about cellular, molecular and physiological processes that control the function of the digestive system and translation of this knowledge into development of therapy for patients with digestive diseases. The research programs of the CURE: DDRCC members can be broadly divided into four major areas: (1) gastroduodenal mucosal physiology and disease;(2) intestinal and pancreatic physiology and disease;(3) neural regulation of gastroenteric function and neuroenteric disease;and (4) mechanism of action of gastrointestinal peptides, including receptor regulation, signal transduction and control of cell proliferation. The Biomedical Research Cores outlined in this proposal provide ready access to technologies, and to clinical and biological materials that are essential to the programs of center members. These Cores provide access to modern cellular imaging to study signaling proteins and their functions, animal models for studying physiology and pathophysiology, molecular vectors to express a wide variety of proteins and access to a broad range of techniques and patients for clinical studies. The Administrative Core provides a wide range of administrative support for members and for center activities, including a comprehensive and multidisciplinary enrichment program. The Pilot and Feasibility Study and Named New Investigator programs have provided a successful mechanism for promoting the development of new programs in digestive diseases-related research, primarily by young investigators. The Center provides an optimal environment for cooperation and collaboration among its investigators, who have had a major impact on digestive disease research over the past three decades and promise to have an even larger impact with continued support from the Center.

Public Health Relevance

CURE: DDRCC is located at both the VA Greater Los Angeles Heathcare System (VAGLAHS) and at the David Geffen School of Medicine at UCLA, Los Angeles, California. The Administrative Core, Human Studies Core, Animal Models Core and a substantial portion of the Morphology and Celllmaging Core of the CURE: DDRCC are located in Building 115 and in the adjacent Building 113 at the VAGLAHS. The laboratories of many members and associate members are housed here. CURE: DDRCC members in the Departments of Medicine, Neurobiology, Pathology, Pediatrics, Physiology and Surgery are also located on the UCLA campus. Part of the Morphology and Celllmaging Core and Molecular Vectors and Peptidomics Core are housed in laboratories at Warren Hall, the MacDonald Research Laboratories and the Center of Health Science on the UCLA campus.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK041301-25
Application #
8578081
Study Section
Special Emphasis Panel (ZDK1-GRB-8 (M1))
Program Officer
Podskalny, Judith M,
Project Start
1996-12-01
Project End
2014-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
25
Fiscal Year
2014
Total Cost
$836,722
Indirect Cost
$172,657
Name
University of California Los Angeles
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Koon, Hon Wai; Wang, Jiani; Mussatto, Caroline C et al. (2018) Fidaxomicin and OP-1118 Inhibit Clostridium difficile Toxin A- and B-Mediated Inflammatory Responses via Inhibition of NF-?B Activity. Antimicrob Agents Chemother 62:
Wang, Jiani; Ghali, Sally; Xu, Chunlan et al. (2018) Ceragenin CSA13 Reduces Clostridium difficile Infection in Mice by Modulating the Intestinal Microbiome and Metabolites. Gastroenterology 154:1737-1750
Rankin, Carl Robert; Theodorou, Evangelos; Man Law, Ivy Ka et al. (2018) Identification of novel mRNAs and lncRNAs associated with mouse experimental colitis and human inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 315:G722-G733
Manatsathit, Wuttiporn; Khrucharoen, Usah; Jensen, Dennis M et al. (2018) Laparotomy and intraoperative enteroscopy for obscure gastrointestinal bleeding before and after the era of video capsule endoscopy and deep enteroscopy: A tertiary center experience. Am J Surg 215:603-609
Dong, Tien; Pisegna, Joseph (2018) Passing the ""Acid Test"": Do Proton Pump Inhibitors Affect the Composition of the Microbiome? Dig Dis Sci :
Park, S H; Naliboff, B D; Shih, W et al. (2018) Resilience is decreased in irritable bowel syndrome and associated with symptoms and cortisol response. Neurogastroenterol Motil 30:
Jacobs, Jonathan P; Dong, Tien S; Agopian, Vatche et al. (2018) Microbiome and bile acid profiles in duodenal aspirates from patients with liver cirrhosis: The Microbiome, Microbial Markers and Liver Disease Study. Hepatol Res :
Basheer, Wassim A; Fu, Ying; Shimura, Daisuke et al. (2018) Stress response protein GJA1-20k promotes mitochondrial biogenesis, metabolic quiescence, and cardioprotection against ischemia/reperfusion injury. JCI Insight 3:
Lin, De-Chen; Dinh, Huy Q; Xie, Jian-Jun et al. (2018) Identification of distinct mutational patterns and new driver genes in oesophageal squamous cell carcinomas and adenocarcinomas. Gut 67:1769-1779
Sala-Rabanal, Monica; Ghezzi, Chiara; Hirayama, Bruce A et al. (2018) Intestinal absorption of glucose in mice as determined by positron emission tomography. J Physiol 596:2473-2489

Showing the most recent 10 out of 1097 publications