This application requests continued support for the NIEHS Center in Environmental Toxicology (UTMB-CET) at the University of Texas Medical Branch at Galveston. The mission of this Center is to integrate, coordinate and foster interactions and collaborations among a multidisciplinary group of established investigators pursuing research pertinent to the effects of environmental factors on human health. The investigators'proximity to sources of many significant environmental problems, such as ozone pollution, emissions of fine particulates, hazardous chemical releases, and hazardous waste sites makes UTMB a compelling site for an environmental health sciences Center. During the fifteen years of its existence, this Center has emerged as a national leader in elucidating cellular response mechanisms to environmental challenge, and in working with the community to enhance awareness of environmental health issues and elaborate prevention and intervention strategies. The overarching theme of the UTMB-CET is the role of oxidative stress in mediating the health effects of exposure to environmental factors. The Center supports multidisciplinary research, organized as Collaborative Research Teams (CRTs) integrating diverse approaches, to examine basic and translational research problems in environmental health. The CRT represents a transformative organizational structure that promotes and rewards collaborative team-based research. The UTMB-CET promotes mentored career development of young investigators, taking advantage of the CRT setting to enhance the training experience. Translational research activities are supported by five facilities within the Integrative Health Science Facility Core, providing the linkage between Center investigators, clinical resources, bioinformatic and biostatistical support services, and community resources. Center investigators are also aided by three established Facility Cores (Molecular Genetics, Biomolecular Resource Facility, and Synthetic Organic Chemistry) that provide advanced technologies, unique reagents, and specialized expertise for both basic and translational studies in a cost-effective manner. Scientific findings from the Center are communicated to the public through a vibrant Community Outreach and Engagement Core, with advice from a Stakeholder Advisory Board. The various activities of the UTMB-CET are coordinated by an Administrative Core, which receives input from an Internal Advisory Board, External Advisory Board, and the Executive Committee, and oversees a variety of programs including a Pilot Project Program, a seminars series, the Director's Fund, and a Discount Management Program. The UTMB-CET supports an outstanding portfolio of research projects in the field of environmental health sciences, with clear translational impact or potentia.

Public Health Relevance

The NIEHS P30 Core Center at the University of Texas Medical Branch (UTMB) provides investigators at UTMB engaged in environmental issues relevant to human health with an infrastructure designed to promote research examining these concerns. Specifically, the Center supports teams of collaborators with essential resources, including access to equipment, skilled personnel and seed monies needed to perform the research. In addition, the Center maintains a structured mentoring program geared towards career development for investigators at various stages of their careers, and active dialog with the lay community impacted by the many environmental health concerns being scientifically addressed by Center investigators.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Center Core Grants (P30)
Project #
Application #
Study Section
Environmental Health Sciences Review Committee (EHS)
Program Officer
Reinlib, Leslie J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Medical Br Galveston
Schools of Medicine
United States
Zip Code
Hao, Wenjing; Qi, Tianyang; Pan, Lang et al. (2018) Effects of the stimuli-dependent enrichment of 8-oxoguanine DNA glycosylase1 on chromatinized DNA. Redox Biol 18:43-53
Shoeb, Mohammad; Zhang, Min; Xiao, Tianlin et al. (2018) Amelioration of Endotoxin-Induced Inflammatory Toxic Response by a Metal Chelator in Rat Eyes. Invest Ophthalmol Vis Sci 59:31-38
Bao, Xiaoyong; Kolli, Deepthi; Esham, Dana et al. (2018) Human Metapneumovirus Small Hydrophobic Protein Inhibits Interferon Induction in Plasmacytoid Dendritic Cells. Viruses 10:
Amer, Samir M; Bhopale, Kamlesh K; Kakumanu, Ramu D et al. (2018) Hepatic alcohol dehydrogenase deficiency induces pancreatic injury in chronic ethanol feeding model of deer mice. Exp Mol Pathol 104:89-97
Chahar, Harendra Singh; Corsello, Tiziana; Kudlicki, Andrzej S et al. (2018) Respiratory Syncytial Virus Infection Changes Cargo Composition of Exosome Released from Airway Epithelial Cells. Sci Rep 8:387
Speidel, Jordan T; Xu, Meixiang; Abdel-Rahman, Sherif Z (2018) Differential effect of ABCB1 haplotypes on promoter activity. Pharmacogenet Genomics 28:69-77
Graber, Ted G; Rawls, Brandy L; Tian, Bing et al. (2018) Repetitive TLR3 activation in the lung induces skeletal muscle adaptations and cachexia. Exp Gerontol 106:88-100
Yoon, Jung-Hoon; Hodge, Richard P; Hackfeld, Linda C et al. (2018) Genetic control of predominantly error-free replication through an acrolein-derived minor-groove DNA adduct. J Biol Chem 293:2949-2958
Prochaska, John D; Buschmann, Robert N; Jupiter, Daniel et al. (2018) Subjective neighborhood assessment and physical inactivity: An examination of neighborhood-level variance. Prev Med 111:336-341
Tian, Bing; Yang, Jun; Zhao, Yingxin et al. (2018) Central Role of the NF-?B Pathway in the Scgb1a1-Expressing Epithelium in Mediating Respiratory Syncytial Virus-Induced Airway Inflammation. J Virol 92:

Showing the most recent 10 out of 601 publications