Funds are requested by 36 vision scientists to support 4 research modules to facilitate and enhance interaction among the vision scientists in the various disciplines represented at the Schepens Eye Research Institute. The modules will extend endeavors of individual research programs by providing collaborative opportunities for projects in which investigators do not have expertise, funding, or technical capabilities. The modules are: Morphology, Animal Resource, Laboratory Computer Applications and Flow Cytometry. The Morphology Module will provide light and electron microscopy, confocal microscopy and image analysis capabilities and tissue preparation for histochemistry and in situ hybridization, thereby increasing the availability of morphologic techniques to biochemists, pharmacologists, cell and molecular biologists, and immunologists who need correlative morphologic data for their research. The module houses and maintains large and expensive shared equipment for morphological work and is available to all members of the Core. The Animal Resource Module will provide expertise and assistance in animal surgical techniques and postoperative care, administration of anesthesia, drugs, and medications. In addition, it will also provide for daily animal husbandry which is required to maintain our high standards for animal housing, sanitation, and veterinary care. The Laboratory Computer Applications Module will provide support to individual and collaborative efforts by assisting in interfacing of microcomputers with lab equipment and by developing software for gathering, processing, and analyzing experimental data by microcomputer systems. The module will also provide assistance to projects involving image processing and analysis from several types of equipment sources. The module interacts very actively with the Morphology and Flow Cytometry Modules supporting computer-based technology. The Flow Cytometry Module is a centralized service providing principal investigators and collaborators access to equipment and technical support for flow cytometry and cell sorting. Available to the investigators are the Coulter Epics XL flow cytometer and the Coulter ELITE EPICS ESP fluorescent cell sorter. The modules are staffed by personnel with specialized training in the respective fields. Each module is under the immediate supervision of an established, experienced investigator(s). The module heads constitute the Core Grant Committee, which is responsible to the Director of Research.

National Institute of Health (NIH)
National Eye Institute (NEI)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (SRC (01))
Program Officer
Helmsen, Ralph J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Schepens Eye Research Institute
United States
Zip Code
Dudek, Amanda M; Pillay, Sirika; Puschnik, Andreas S et al. (2018) An Alternate Route for Adeno-associated Virus (AAV) Entry Independent of AAV Receptor. J Virol 92:
Shen, Junhui; Xiao, Ru; Bair, Jeffrey et al. (2018) Novel engineered, membrane-localized variants of vascular endothelial growth factor (VEGF) protect retinal ganglion cells: a proof-of-concept study. Cell Death Dis 9:1018
Guo, Chenying; Cho, Kin-Sang; Li, Yingqian et al. (2018) IGFBPL1 Regulates Axon Growth through IGF-1-mediated Signaling Cascades. Sci Rep 8:2054
Wang, Mengyu; Jin, Qingying; Wang, Hui et al. (2018) The Interrelationship between Refractive Error, Blood Vessel Anatomy, and Glaucomatous Visual Field Loss. Transl Vis Sci Technol 7:4
Houston, Kevin E; Bowers, Alex R; Peli, Eli et al. (2018) Peripheral Prisms Improve Obstacle Detection during Simulated Walking for Patients with Left Hemispatial Neglect and Hemianopia. Optom Vis Sci 95:795-804
Houston, Kevin E; Peli, Eli; Goldstein, Robert B et al. (2018) Driving With Hemianopia VI: Peripheral Prisms and Perceptual-Motor Training Improve Detection in a Driving Simulator. Transl Vis Sci Technol 7:5
Jung, Jae-Hyun; Peli, Eli (2018) No Useful Field Expansion with Full-field Prisms. Optom Vis Sci 95:805-813
Katikireddy, Kishore Reddy; White, Tomas L; Miyajima, Taiga et al. (2018) NQO1 downregulation potentiates menadione-induced endothelial-mesenchymal transition during rosette formation in Fuchs endothelial corneal dystrophy. Free Radic Biol Med 116:19-30
Alavi, Maryam; Baranov, Petr (2018) The iPSc-Derived Retinal Tissue as a Tool to Study Growth Factor Production in the Eye. Adv Exp Med Biol 1074:619-624
Zhu, Ying; Pappas, Anthony C; Wang, Rui et al. (2018) Ultrastructural Morphology of the Optic Nerve Head in Aged and Glaucomatous Mice. Invest Ophthalmol Vis Sci 59:3984-3996

Showing the most recent 10 out of 164 publications