Animal Models Module Abstract The objective of the Animal Models Module is to enhance the capabilities of individual investigators to conduct cutting edge research in the vision sciences, which involves generation and characterization of animal models of disease.
Our Aims are: 1) to provide resources, support and training required for conducting animal studies at the level exceeding the capabilities of any individual laboratory; 2) to promote collegiality across the community of vision scientists through sharing resources, techniques and expertise; and 3) to engage colleagues into conducting vision research, including support of the next generation of basic and clinician scientists. To achieve these Aims, this Module will support sophisticated facilities equipped with state-of-the- art instrumentation, including surgical equipment and instrumentation for morphological and functional analyses of animal eyes. The Module will be supervised and operated by highly experienced personnel, with expertise in conducting a broad array of animal studies and deep understanding of associated regulatory conditions. These shared resources will open new research possibilities for both experienced and novice users, and will serve as a platform for fostering interactions among a broad swath of our research community.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY005722-34
Application #
9784836
Study Section
Special Emphasis Panel (ZEY1)
Project Start
Project End
Budget Start
2019-09-01
Budget End
2020-08-31
Support Year
34
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Smit-McBride, Zeljka; Nguyen, Johnny; Elliott, Garrett W et al. (2018) Effects of aging and environmental tobacco smoke exposure on ocular and plasma circulatory microRNAs in the Rhesus macaque. Mol Vis 24:633-646
Lobanova, Ekaterina S; Finkelstein, Stella; Li, Jing et al. (2018) Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration. Nat Commun 9:1738
Parolini, Barbara; Grewal, Dilraj S; Pinackatt, Sajish J et al. (2018) COMBINED AUTOLOGOUS TRANSPLANTATION OF NEUROSENSORY RETINA, RETINAL PIGMENT EPITHELIUM, AND CHOROID FREE GRAFTS. Retina 38 Suppl 1:S12-S22
Malek, Goldis; Busik, Julia; Grant, Maria B et al. (2018) Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discov 13:359-377
Choudhary, Mayur; Safe, Stephen; Malek, Goldis (2018) Suppression of aberrant choroidal neovascularization through activation of the aryl hydrocarbon receptor. Biochim Biophys Acta Mol Basis Dis 1864:1583-1595
Toomey, Christopher B; Landowski, Michael; Klingeborn, Mikael et al. (2018) Effect of Anti-C5a Therapy in a Murine Model of Early/Intermediate Dry Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 59:662-673
Travis, Amanda M; Heflin, Stephanie J; Hirano, Arlene A et al. (2018) Dopamine-Dependent Sensitization of Rod Bipolar Cells by GABA Is Conveyed through Wide-Field Amacrine Cells. J Neurosci 38:723-732
Toomey, Christopher B; Johnson, Lincoln V; Bowes Rickman, Catherine (2018) Complement factor H in AMD: Bridging genetic associations and pathobiology. Prog Retin Eye Res 62:38-57
Hirt, Joshua; Porter, Kris; Dixon, Angela et al. (2018) Contribution of autophagy to ocular hypertension and neurodegeneration in the DBA/2J spontaneous glaucoma mouse model. Cell Death Discov 4:14
Ban, Norimitsu; Lee, Tae Jun; Sene, Abdoulaye et al. (2018) Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss. JCI Insight 3:

Showing the most recent 10 out of 437 publications