The Nuclear Magnetic Resonance (NMR) Core with the existing state-of-the-art instrumentation and techniques is represents a critical part of COBRE to address the following needs of COBRE research programs across the campus ofthe University of Delaware (1) to facilitate the research and development of NMR spectroscopy as a premier method for structural analysis of a wide variety of systems in solution and solid states, and (2) to provide support for structural analyses of small-molecule and macromolecule-based biomaterials in solution and solid states.

Public Health Relevance

Structural characterization of biomaterials at atomic resolution is critical to the design and optimization of biomaterials. Nuclear Magnetic Resonance (NMR) spectroscopy plays a unique and an irreplaceable role as a method for atomic-scale structural analysis ofvarious kinds of materials. The NMR Core will provide stateof- the-art NMR research instrumentation and expertise to help COBRE investigators gain fundamental insights into the structures of materials under investigation. These studies will ultimately generate materials systems that are optimized for their targeted drug delivery and tissue engineering applications.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
5P30GM110758-02
Application #
8932714
Study Section
Special Emphasis Panel (ZGM1-TWD-C)
Project Start
Project End
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
2
Fiscal Year
2015
Total Cost
$352,808
Indirect Cost
$126,649
Name
University of Delaware
Department
Type
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Bush, Timothy S; Yap, Glenn P A; Chain, William J (2018) Transformation of N, N-Dimethylaniline N-Oxides into Diverse Tetrahydroquinoline Scaffolds via Formal Povarov Reactions. Org Lett 20:5406-5409
Hadden, Jodi A; Perilla, Juan R (2018) All-atom virus simulations. Curr Opin Virol 31:82-91
Liu, Jun; Cheng, Rujin; Wu, Haifan et al. (2018) Building and Breaking Bonds via a Compact S-Propargyl-Cysteine to Chemically Control Enzymes and Modify Proteins. Angew Chem Int Ed Engl 57:12702-12706
Goodwin, Christopher M; Voras, Zachary E; Beebe Jr, Thomas P (2018) Gas-cluster ion sputtering: Effect on organic layer morphology. J Vac Sci Technol A 36:051507
He, Chuan; Teplyakov, Andrew V (2018) 29,31- H Phthalocyanine Covalently Bonded Directly to a Si(111) Surface Retains Its Metalation Ability. Langmuir 34:10880-10888
Dick, Robert A; Zadrozny, Kaneil K; Xu, Chaoyi et al. (2018) Inositol phosphates are assembly co-factors for HIV-1. Nature 560:509-512
Macdougall, Laura J; Wiley, Katherine L; Kloxin, April M et al. (2018) Design of synthetic extracellular matrices for probing breast cancer cell growth using robust cyctocompatible nucleophilic thiol-yne addition chemistry. Biomaterials 178:435-447
Drolen, Claire; Conklin, Eric; Hetterich, Stephen J et al. (2018) pH-Driven Mechanistic Switching from Electron Transfer to Energy Transfer between [Ru(bpy)3]2+ and Ferrocene Derivatives. J Am Chem Soc 140:10169-10178
Dicker, K T; Song, J; Moore, A C et al. (2018) Core-shell patterning of synthetic hydrogels via interfacial bioorthogonal chemistry for spatial control of stem cell behavior. Chem Sci 9:5394-5404
Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L et al. (2018) Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices. ACS Biomater Sci Eng 4:836-845

Showing the most recent 10 out of 177 publications