As proposed, the Microscopy, Image Analysis & Stereology Core would be created as an independent core completely separated from the existing Microscopy Facility at this institution. The core would, however, be equipped with current in-house equipment made available by SCoBIRC faculty including two Olympus Provis AX70 Fluorescence Microscopes (Image Pro interfaced via MagnaFire Digital Camera), Olympus BX 41 with Video Camera, Olympus BX 50 Epifluorescent Microscope (Bioquant Stereology package + 3D topographer interfaced with MagnaFire Digital Camera & Optronics Video Camera), Nikon E400 teaching microscopy with DAGE Video Camera. Specifically, the proposed Microscopy, Image Analysis & Stereology Core will combine the existing equipment, which is currently scattered among various NINDS-funded investigators' laboratories, with the additional new equipment and dedicated technical oversight. It would also place all these facilities under one administrative structure. Accordingly, the proposed core requests the provision of a senior technician who will oversee the use of the image analysis and stereology equipment as well as the desired confocal microscope.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS051220-03
Application #
7439097
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
3
Fiscal Year
2007
Total Cost
$230,783
Indirect Cost
Name
University of Kentucky
Department
Type
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Keeney, Jeriel T R; Ren, Xiaojia; Warrier, Govind et al. (2018) Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment (""chemobrain""). Oncotarget 9:30324-30339
Sama, Diana M; Carlson, Shaun W; Joseph, Binoy et al. (2018) Assessment of systemic administration of PEGylated IGF-1 in a mouse model of traumatic brain injury. Restor Neurol Neurosci 36:559-569
Lanzillotta, Chiara; Tramutola, Antonella; Meier, Shelby et al. (2018) Early and Selective Activation and Subsequent Alterations to the Unfolded Protein Response in Down Syndrome Mouse Models. J Alzheimers Dis 62:347-359
Hill, Rachel L; Singh, Indrapal N; Wang, Juan A et al. (2017) Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury. Neurochem Int 111:45-56
Patel, Samir P; Cox, David H; Gollihue, Jenna L et al. (2017) Pioglitazone treatment following spinal cord injury maintains acute mitochondrial integrity and increases chronic tissue sparing and functional recovery. Exp Neurol 293:74-82
Gensel, John C; Kopper, Timothy J; Zhang, Bei et al. (2017) Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment. Sci Rep 7:40144
Orr, Michael B; Simkin, Jennifer; Bailey, William M et al. (2017) Compression Decreases Anatomical and Functional Recovery and Alters Inflammation after Contusive Spinal Cord Injury. J Neurotrauma 34:2342-2352
Kulbe, Jacqueline R; Hall, Edward D (2017) Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Prog Neurobiol 158:15-44
Gollihue, Jenna L; Patel, Samir P; Mashburn, Charlie et al. (2017) Optimization of mitochondrial isolation techniques for intraspinal transplantation procedures. J Neurosci Methods 287:1-12
Zhang, Bei; Bailey, William M; McVicar, Anna Leigh et al. (2016) Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury. Neurobiol Aging 47:157-167

Showing the most recent 10 out of 84 publications