This component provides details about AGSC operations, axolotl stocks and supplies, and innovations in axolotl care and genetic management. The host institution recently provided support to install new aquatic recirculating systems to better ensure axolotl health and make husbandry more efficient. The AGSC currently houses approximately 50% of the adult population in recirculating systems and will work toward the goal of housing 75% during the next funding period. A financial plan is described that will ensure long-term sustainability of axolotl stocks and move the AGSC each year towards greater self-sufficiency. Finally, plans are presented to share methods, protocols, and data. The AGSC is a proven axolotl resource provider and will continue to ensure distribution and long-term sustainability of axolotl stocks to NIH investigators.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kentucky
United States
Zip Code
Al Haj Baddar, Nour W; Chithrala, Adarsh; Voss, S Randal (2018) Amputation-induced reactive oxygen species signaling is required for axolotl tail regeneration. Dev Dyn :
Randal Voss, S; Murrugarra, David; Jensen, Tyler B et al. (2018) Transcriptional correlates of proximal-distal identify and regeneration timing in axolotl limbs. Comp Biochem Physiol C Toxicol Pharmacol 208:53-63
Johnson, Kimberly; Bateman, Joel; DiTommaso, Tia et al. (2018) Systemic cell cycle activation is induced following complex tissue injury in axolotl. Dev Biol 433:461-472
Bryant, Donald M; Johnson, Kimberly; DiTommaso, Tia et al. (2017) A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors. Cell Rep 18:762-776
Ritenour, Angela M; Dickie, Renee (2017) Inhibition of Vascular Endothelial Growth Factor Receptor Decreases Regenerative Angiogenesis in Axolotls. Anat Rec (Hoboken) 300:2273-2280
Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra et al. (2017) Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum. Sci Rep 7:6
Montoro, Rodrigo; Dickie, Renee (2017) Comparison of tissue processing methods for microvascular visualization in axolotls. MethodsX 4:265-273
Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L (2017) Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration. Mech Dev 146:42-54
McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian et al. (2016) Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs. Dev Biol 416:26-33
Keinath, Melissa C; Timoshevskiy, Vladimir A; Timoshevskaya, Nataliya Y et al. (2015) Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing. Sci Rep 5:16413

Showing the most recent 10 out of 11 publications