FOR TR&D 3 TR&D 3 of the BTRC will develop imaging agents to detect inflammation and immunity, with a focus on small molecule PET agents to monitor immunotherapy, an increasing medical need. Inflammation has long been recognized as a promoter of tumor growth. More recently, harnessing innate and adaptive immunity to treat cancer through immune checkpoint inhibition and vaccines has captivated the community of cancer researchers and clinicians alike. We will develop and disseminate agents that address two different aspects of cancer and its relationships to inflammation and immunity, namely, checkpoint inhibition and complement. The immune checkpoint protein programmed death-ligand 1 (PD-L1) and its receptor PD-1 are preferred targets for cancer immunotherapy. PD-L1 is expressed by a variety of tumors, and its over-expression is induced in tumor cells to adapt to tumor infiltrating cytotoxic T cells. PD-L1 immunohistochemistry (IHC) is the best predictive biomarker for therapeutic monitoring of PD-L1/PD-1 targeted therapies. However, PD-L1 IHC is fraught with use of discordant antibodies, intra- and inter-tumoral heterogeneity of expression as well as limited bio-specimen availability such that we believe non-invasive imaging can help. Furthermore, despite the promise of immune checkpoint therapy, the majority of patients do not respond for reasons unclear. The complement system is central to recruiting inflammatory cells and promoting release of factors that can promote tumor growth and progression, confounding immunotherapy. We will synthesize, validate and disseminate agents targeting PD-L1 (Aim 1) and complement receptors C3aR and C5aR (Aim 2), which are bound by their cognate tumor-promoting anaphylatoxins.
In Aim 3 we will validate ? with correlation to post-imaging surgical tissue ? a current BTRC lead PD-L1 imaging agent in patients undergoing immunotherapy for pancreas cancer through support from the Bloomberg-Kimmel Institute for Immunotherapy. Once validated in this ultimate fashion we will be confident to disseminate that agent for human studies elsewhere. TR&D 3 will also serve as the Clinical Validation Core, a hub that will disseminate not only valuable new human agents as noted above, but will also provide precursor and standard for other agents, allow cross-referencing of BTRC INDs and provide analysis to meet the evolving needs of the driving Collaborative Projects and service recipients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
1P41EB024495-01
Application #
9358162
Study Section
Special Emphasis Panel (ZEB1)
Project Start
Project End
Budget Start
2017-09-15
Budget End
2018-06-30
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Chen, Lin; Xu, Xiang; Zeng, Haifeng et al. (2018) Separating fast and slow exchange transfer and magnetization transfer using off-resonance variable-delay multiple-pulse (VDMP) MRI. Magn Reson Med 80:1568-1576
Zukotynski, Katherine A; Valliant, John; Bénard, François et al. (2018) Flare on Serial Prostate-Specific Membrane Antigen-Targeted 18F-DCFPyL PET/CT Examinations in Castration-Resistant Prostate Cancer: First Observations. Clin Nucl Med 43:213-216
De Silva, Ravindra A; Kumar, Dhiraj; Lisok, Ala et al. (2018) Peptide-Based 68Ga-PET Radiotracer for Imaging PD-L1 Expression in Cancer. Mol Pharm 15:3946-3952
Foss, Catherine A; Kulik, Liudmila; Ordonez, Alvaro A et al. (2018) SPECT/CT Imaging of Mycobacterium tuberculosis Infection with [125I]anti-C3d mAb. Mol Imaging Biol :
Banerjee, Sangeeta Ray; Song, Xiaolei; Yang, Xing et al. (2018) Salicylic Acid-Based Polymeric Contrast Agents for Molecular Magnetic Resonance Imaging of Prostate Cancer. Chemistry 24:7235-7242
Bulte, Jeff W M; Daldrup-Link, Heike E (2018) Clinical Tracking of Cell Transfer and Cell Transplantation: Trials and Tribulations. Radiology 289:604-615
Liu, Guanshu; Ray Banerjee, Sangeeta; Yang, Xing et al. (2017) A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nat Biomed Eng 1:977-982