Glycosaminoglycans (GAGs), such as heparin, heparan sulfate (HS), and chondroitin sulfate (CS), are naturally occurring polydisperse linear polysaccharides that are heavily O- and N-sulfated. The interaction between GAGs and proteins are critical for many biological processes including cell-cell and cell-matrix interactions, cell migration and proliferation, growth factor sequestration, chemokine and cytokine activation, microbial recognition and tissue morphogenesis during embryonic development. Hundreds of HS-binding proteins have been identified, but the oligosaccharide structures that mediate particular interactions have been defined in only a few cases due to the structural complexity of HS. The objective of the Training component of the Resource is to train scientist from outside the CCRC in cutting edge technologies developed by Resource investigators and to ensure that these methods are transferred to the scientific community. The most effective method to expose the outside investigators to our technologies is through hands-on training. Since 1990, the CCRC and this resource have offered hands-on training courses to scientists from other institutions that wish to learn analytical methods in complex carbohydrate science. Over the years, we have built a strong infrastructure for training the next generation of glycobiologists in the most update methods of glycoconjugate analysis.
The aims of the Training component are: (1) Hands-on Training - we will offer four formal annual hands-on training courses in (i.) Separation and Characterization of Glycoprotein and Glycolipid Oligosaccharides, (ii.) Techniques for Characterization of Carbohydrate Structure of Polysaccharide, (iii.) Analytical Techniques for Structural Characterization of Proteoglycans, (iv.) Mass Spectrometry of Glycoproteins. The third course (Analytical Techniques for Structural Characterization of Proteoglycans) is particularly dedicated to technologies that are developed in this resource. However, all other hands-on courses have components of methods tools being developed incorporated in them such as the NMR, molecular modeling, MS modules. (2) Incorporation of New Technologies - Part of the success of the hands-on training has been due to implementing the new technologies derived from the TR&Ds into the laboratory experiments and protocols. We continually strive to improve our workshops by adding newly developed techniques and methods. Plans are underway to expand Course III with an online LC-ESI-MS experiment using the new LTQ-Fusion with its various fragmentation capabilities and use the new Capillary Electrophoresis in the service laboratory to design an experiment for separation of negatively charged GAG oligomers by CE for this training course.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103390-28
Application #
9222766
Study Section
Special Emphasis Panel (ZRG1-IMST-J)
Project Start
Project End
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
28
Fiscal Year
2017
Total Cost
$17,010
Indirect Cost
$5,670
Name
University of Georgia
Department
Type
Domestic Higher Education
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Tellier, L E; Krieger, J R; Brimeyer, A L et al. (2018) Localized SDF-1? Delivery Increases Pro-Healing Bone Marrow-Derived Cells in the Supraspinatus Muscle Following Severe Rotator Cuff Injury. Regen Eng Transl Med 4:92-103
Jiang, Hao; López-Aguilar, Aimé; Meng, Lu et al. (2018) Modulating Cell-Surface Receptor Signaling and Ion Channel Functions by In?Situ Glycan Editing. Angew Chem Int Ed Engl 57:967-971
Amon, Ron; Grant, Oliver C; Leviatan Ben-Arye, Shani et al. (2018) A combined computational-experimental approach to define the structural origin of antibody recognition of sialyl-Tn, a tumor-associated carbohydrate antigen. Sci Rep 8:10786
Lu, Weigang; Zong, Chengli; Chopra, Pradeep et al. (2018) Controlled Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides. Angew Chem Int Ed Engl 57:5340-5344
Xu, Xianzhong; Eletsky, Alexander; Sheikh, M Osman et al. (2018) Glycosylation Promotes the Random Coil to Helix Transition in a Region of a Protist Skp1 Associated with F-Box Binding. Biochemistry 57:511-515
Zhao, Yuejie; Yang, Jeong Yeh; Thieker, David F et al. (2018) A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction. J Am Soc Mass Spectrom 29:1153-1165
Epp, Alexandra; Hobusch, Juliane; Bartsch, Yannic C et al. (2018) Sialylation of IgG antibodies inhibits IgG-mediated allergic reactions. J Allergy Clin Immunol 141:399-402.e8
Gas-Pascual, Elisabet; Ichikawa, Hiroshi Travis; Sheikh, Mohammed Osman et al. (2018) CRISPR/Cas9 and glycomics tools for Toxoplasma glycobiology. J Biol Chem :
Flanagan-Steet, Heather; Christian, Courtney; Lu, Po-Nien et al. (2018) TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development. Cell Rep 22:2964-2977
Talsma, Ditmer T; Katta, Kirankumar; Ettema, Marieke A B et al. (2018) Endothelial heparan sulfate deficiency reduces inflammation and fibrosis in murine diabetic nephropathy. Lab Invest 98:427-438

Showing the most recent 10 out of 246 publications