This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The genetic code is established by a system of 20 enzymes, aminoacyl-tRNA synthetases, which attach specific amino acids to tRNAs carrying anti-codon sequences cognate for the amino acid. Similarly, it has been recently proposed that the more numerous tRNA modification enzymes bind to their RNA substrates according to a complex recognition code. We want to understand the structural basis of highly specific tRNA recognition by these enzymes. A well studied synthetase is alanyl-tRNA synthetase which has been recently crystallographically deciphered (Swairjo et al., Mol. Cell., 2004, 13(6):829-841). This synthetase recognizes its cognate tRNA at a conserved G:U base pair in the acceptor stem, and is indifferent toward the tRNA anticodon. We have large crystals of AlaRS complexed with an RNA substrate mimicking the acceptor stem of tRNAAla. Similarly, YHDG and Ykvm are two novel enzymes involved in two different and specific tRNA modifications. We have crystals of Ykvm, and are currently persuing its tRNA complex with crystaliization trials.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-28
Application #
7598082
Study Section
Special Emphasis Panel (ZRG1-BPC-E (40))
Project Start
2007-03-01
Project End
2008-02-29
Budget Start
2007-03-01
Budget End
2008-02-29
Support Year
28
Fiscal Year
2007
Total Cost
$199
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Morrison, Christine N; Spatzal, Thomas; Rees, Douglas C (2017) Reversible Protonated Resting State of the Nitrogenase Active Site. J Am Chem Soc 139:10856-10862
Zhang, Haonan; Qiao, Anna; Yang, Dehua et al. (2017) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259-264

Showing the most recent 10 out of 604 publications