This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Heme proteins have been studied extensively by x-ray absorption spectroscopy, but new proteins/roles continue to emerge. XANES and multiple-scattering XAFS studies are sensitive probes of their oxidation state, coordination number and the nature of the coordinating ligands. We will study the heme structures with respect to the roles of neuroglobin (Nb) in the brain, NO binding and other functions of myoglobin (Mb) in cardiovascular disease, and the new protein, indoleamine 2,3-dioxygenase-2 (IDO-2), in the kidneys. We will use these techniques to compare the structures of different adducts and oxidation states of the isolated proteins with those contained within cells. In particular, whether Nb confers neuro-protection during cerebral ischemia is controversial and we plan to study changes in the structures of intracellular neuroglobin in neurons under normal conditions and those associated with stroke and neurodegenerative diseases. Similarly, NO binding to Mb is important in the health of the cardiovascular system, but it is uncertain as to whether it binds to the thiolate group, the heme centre or both in human Mb in vivo. We will compare the XAS data from isolated proteins with those found in cells under various conditions associated with normal conditions and those associated with cardiovascular disease. Finally, the recently discovered IDO-2 metabolizes tryptophan, like the well-studied IDO (now known as IDO-1). However, IDO-2, unlike IDO-1, loses its activity when the protein is isolated and purified. XAS will be used to study the structural changes that occur during the isolation procedures in order to ascertain the likely active structure in vivo. This is important as there is mounting evidence that IDO-2 in the kidney has a role in controlling blood pressure and, hence, understanding the nature of the active form and how its activity may be modulated to control blood pressure has many potential applications in the treatment of both low and high blood pressure.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-30
Application #
7954533
Study Section
Special Emphasis Panel (ZRG1-BPC-E (40))
Project Start
2009-03-01
Project End
2010-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
30
Fiscal Year
2009
Total Cost
$213
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Hettle, Andrew; Fillo, Alexander; Abe, Kento et al. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of ?-1,3-glucan. J Biol Chem 292:16955-16968
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O et al. (2017) Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep 7:44628

Showing the most recent 10 out of 604 publications