This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. C2 domains are common phospholipid binding motifs used by an array of proteins. My lab has successfully crystallized C2 domains from a variety of proteins, and we have solved the structures of some these domains using ultra high resolution diffraction data collected at SSRL. While the fold of these domains is well known, the regulation of C2 domains and their involvement in disease processes are still not understood. Here, we will investigate two proteins that utilize C2 domains to answer the aforementioned questions. The first is a continuation of our previous work with the C2 domains of synaptotagmin 1. Our hypothesis is that the ?un-structured linker? domain, which is N-terminal to the main body of the C2 domain, can interact with the Ca+2 binding pocket of C2A to modify the affinity for calcium ion. The second project involves determining the 3D structure of the 7 C2 domains of human dysferlin. Mutations within these C2 domains are known to cause Limb-Girdle muscular dystrophy in humans, and structural information is essential to understand the etiology of this disease.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-32
Application #
8362288
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2011-03-01
Project End
2012-02-29
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
32
Fiscal Year
2011
Total Cost
$4,105
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; J├Ânsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Noach, Ilit; Ficko-Blean, Elizabeth; Pluvinage, Benjamin et al. (2017) Recognition of protein-linked glycans as a determinant of peptidase activity. Proc Natl Acad Sci U S A 114:E679-E688
Robb, Melissa; Hobbs, Joanne K; Woodiga, Shireen A et al. (2017) Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence. PLoS Pathog 13:e1006090

Showing the most recent 10 out of 604 publications