The aim of this project is to develop injectable and degradable biomaterials for orthopaedic applications. ESCA will be used to determine the surface composition of these poly(propylene fumarate)-based biomaterials. The possible unsaturated carbonyl group existing at the surface would allow direct modification of the surface with peptide chains. Parallel cell attachment studies will be done with the surface analysis.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001296-18
Application #
6656599
Study Section
Project Start
2002-09-01
Project End
2003-08-31
Budget Start
Budget End
Support Year
18
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Tyler, Bonnie J; Peterson, Richard E (2013) Dead-time correction for time-of-flight secondary-ion mass spectral images: a critical issue in multivariate image analysis. Surf Interface Anal 45:475-478
Tyler, B J; Bruening, C; Rangaranjan, S et al. (2011) TOF-SIMS imaging of adsorbed proteins on topographically complex surfaces with Bi(3) (+) primary ions. Biointerphases 6:135
Medzihradszky, Katalin F (2008) Characterization of site-specific N-glycosylation. Methods Mol Biol 446:293-316
Medzihradszky, Katalin F (2005) Peptide sequence analysis. Methods Enzymol 402:209-44
Sanders, Joan E; Lamont, Sarah E; Karchin, Ari et al. (2005) Fibro-porous meshes made from polyurethane micro-fibers: effects of surface charge on tissue response. Biomaterials 26:813-8
Medzihradszky, Katalin F (2005) In-solution digestion of proteins for mass spectrometry. Methods Enzymol 405:50-65
Medzihradszky, Katalin F (2005) Characterization of protein N-glycosylation. Methods Enzymol 405:116-38
Cheng, Xuanhong; Wang, Yanbing; Hanein, Yael et al. (2004) Novel cell patterning using microheater-controlled thermoresponsive plasma films. J Biomed Mater Res A 70:159-68
Wagner, Victoria E; Koberstein, Jeffrey T; Bryers, James D (2004) Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers. Biomaterials 25:2247-63
Tsai, W B; Shi, Q; Grunkemeier, J M et al. (2004) Platelet adhesion to radiofrequency glow-discharge-deposited fluorocarbon polymers preadsorbed with selectively depleted plasmas show the primary role of fibrinogen. J Biomater Sci Polym Ed 15:817-40

Showing the most recent 10 out of 120 publications