This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We have synthesized an irreversible inhibitor that binds to a variety of protein kinases. This compound, FSPP, covalently modifies a conserved catalytic lysine active site and carries a propargyl group to attach diverse fluorescent and affinity tags after protein modification via copper catalyzed """"""""click chemistry."""""""" The covalent nature of FSPP's inhibitory mechanism facilitates identification of its kinase targets. We are using this compound's chemical properties to probe the kinases of the eukaryotic parasite Trypanosoma brucei, the causative agent of African sleeping sickness, for new potential therapeutic targets. FSPP inhibits T brucei growth at one micro molar, and we are attempting to identify the essential kinase(s) mediating this toxicity using affinity purification and mass spectrometry. Additionally we are using a competitive labeling strategy to identify potential reversible active site directed inhibitors of the same kinases. Non-covalent inhibitors sharing targets with FSPP will slow or halt the rate of those targets'chemical modification when cell lysates are co-treated with FSPP and the reversible competitor. We believe this strategy will identify novel therapeutic targets for this disease while at the same time providing valuable structure activity relationships for future drug development.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001614-27
Application #
7957426
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
27
Fiscal Year
2009
Total Cost
$770
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Kintzer, Alexander F; Stroud, Robert M (2016) Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:258-62
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048

Showing the most recent 10 out of 630 publications