This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. A major challenge to understanding human metabolism is posed by the absence of methods designed to investigate living tissues and organs directly. Until now, most studies have been conducted using surrogate markers of metabolism, such as blood tests, or have utilized samples obtained through biopsies or other surgical procedures. These difficulties are compounded when repeated measurements are needed (for example, to assess changes after treatment, or to understand growth and development) or when confronted with newly recognized or poorly-understood human disease states. Many types of childhood epilepsy, mental retardation, autism and other common forms of neurobehavioral disability are now thought to be manifestation of genetic abnormalities of fat, carbohydrate and protein metabolism that affect brain development and function. Most of these diseases remain understudied and, as a consequence, treatments are necessarily unsatisfactory. We propose to combine the resources of Children's Medical Center with novel technology developed at the UT Southwestern Clements Advanced Imaging Research Center to measure metabolism in the muscles of children by NMR (nuclear magnetic resonance) techniques, the same method on which routine MRI studies are based. Children afflicted by mitochondrial diseases capable of cooperating with the performance of an MRI will be invited to participate (together with a normal comparison group) on the basis of DNA and other tests demonstrative of a mitochondrial disease and will be additionally assessed using scored physical and neurological examinations and brain MRI. We anticipate that these studies will a) help us better understand the mechanisms of mitochondrial and related energy failure diseases, b) allow us to re-define these diseases on the basis of metabolic flux and muscle content measurements, c) improve the diagnosis of these disorders, including the detection of at-risk carrier relatives, and d) identify potential quantifiable markers for the conduct and evaluation of future clinical trials.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002584-22
Application #
7956951
Study Section
Special Emphasis Panel (ZRG1-SBIB-Q (40))
Project Start
2009-09-01
Project End
2010-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
22
Fiscal Year
2009
Total Cost
$17,838
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James et al. (2018) MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors. PLoS One 13:e0198065
Mishkovsky, Mor; Anderson, Brian; Karlsson, Magnus et al. (2017) Measuring glucose cerebral metabolism in the healthy mouse using hyperpolarized 13C magnetic resonance. Sci Rep 7:11719
Moreno, Karlos X; Harrison, Crystal E; Merritt, Matthew E et al. (2017) Hyperpolarized ?-[1-13 C]gluconolactone as a probe of the pentose phosphate pathway. NMR Biomed 30:
Funk, Alexander M; Anderson, Brian L; Wen, Xiaodong et al. (2017) The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose. J Magn Reson 284:86-93
Zhang, Liang; Habib, Amyn A; Zhao, Dawen (2016) Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging. Oncotarget 7:38693-38706
Walker, Christopher M; Merritt, Matthew; Wang, Jian-Xiong et al. (2016) Use of a Multi-compartment Dynamic Single Enzyme Phantom for Studies of Hyperpolarized Magnetic Resonance Agents. J Vis Exp :e53607
Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C et al. (2016) pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent. Magn Reson Med 75:2432-41
Malloy, Craig R; Sherry, A Dean (2016) Biochemical Specificity in Human Cardiac Imaging by 13C Magnetic Resonance Imaging. Circ Res 119:1146-1148
Moss, Lacy R; Mulik, Rohit S; Van Treuren, Tim et al. (2016) Investigation into the distinct subcellular effects of docosahexaenoic acid loaded low-density lipoprotein nanoparticles in normal and malignant murine liver cells. Biochim Biophys Acta 1860:2363-2376
Bastiaansen, Jessica A M; Merritt, Matthew E; Comment, Arnaud (2016) Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate. Sci Rep 6:25573

Showing the most recent 10 out of 374 publications