The overall goal of these studies is to determine the molecular mechanisms for activity-dependent regulation of postsynaptic cytoskeletal organization. These studies will focus on microtubules, actin filaments, and the dendritic microtubule-associated protein MAP2. Cultured neurons will be labeled for MAP2, F-actin, and/or their associated proteins, and examined using either two-photon fluorescence microscopy or HVEM. Labeling will be accomplished using eosin conjugated reagents followed by photo-oxidation for electron microscopic examination. The organization of actin filaments in dendritic spines will be examined in cultures incubated in the absence or presence of glutamate agonists. Preliminary experiments performed at the NCMIR have shown that photo-oxidation of phalloidin-eosin provides beautiful and selective delineation of dendritic spines in slices of cerebellum. We will use tomographic reconstructions and IVEM to correlated light microscopic observations on the effects of glutamatergic stimulation on spine structure.. We will also use this technique to examine the 3-dimensional organization of the actin cytoskeleton itself under different conditions. The interaction of MAP2 in situ with actin filaments or the RII regulatory subunit of PKA will be examined using FRET combined with high resolution two-photon imaging. These data will be integrated into a developing model of the protein-protein interactions that occur among cytoskeletal elements in the postsynaptic compartment of neurons and their regulation by neural activity. Preliminary experiments to determine optimal specimen preparation procedures are underway.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR004050-10
Application #
6282156
Study Section
Project Start
1998-04-01
Project End
1999-03-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
10
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Yin, Xinghua; Kidd, Grahame J; Ohno, Nobuhiko et al. (2016) Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling. J Cell Biol 215:531-542
Zhao, Claire Y; Greenstein, Joseph L; Winslow, Raimond L (2016) Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network. J Mol Cell Cardiol 91:215-27
Funakoshi, Shunsuke; Miki, Kenji; Takaki, Tadashi et al. (2016) Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep 6:19111
Rubio-Marrero, Eva N; Vincelli, Gabriele; Jeffries, Cy M et al. (2016) Structural Characterization of the Extracellular Domain of CASPR2 and Insights into Its Association with the Novel Ligand Contactin1. J Biol Chem 291:5788-802
Rajagopal, Vijay; Bass, Gregory; Walker, Cameron G et al. (2015) Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Comput Biol 11:e1004417
Schachtrup, Christian; Ryu, Jae Kyu; Mammadzada, Könül et al. (2015) Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-? signaling and astrocyte functions. Nat Neurosci 18:1077-80
Sanders, Matthew A; Madoux, Franck; Mladenovic, Ljiljana et al. (2015) Endogenous and Synthetic ABHD5 Ligands Regulate ABHD5-Perilipin Interactions and Lipolysis in Fat and Muscle. Cell Metab 22:851-60
Takeshima, Hiroshi; Hoshijima, Masahiko; Song, Long-Sheng (2015) Ca²? microdomains organized by junctophilins. Cell Calcium 58:349-56
Mills, Elizabeth A; Davis, Chung-ha O; Bushong, Eric A et al. (2015) Astrocytes phagocytose focal dystrophies from shortening myelin segments in the optic nerve of Xenopus laevis at metamorphosis. Proc Natl Acad Sci U S A 112:10509-14
Kim, K-Y; Perkins, G A; Shim, M S et al. (2015) DRP1 inhibition rescues retinal ganglion cells and their axons by preserving mitochondrial integrity in a mouse model of glaucoma. Cell Death Dis 6:e1839

Showing the most recent 10 out of 384 publications