This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Our lab focuses on the molecular basis of protein-protein interaction crucial for cell signal transduction in the normal and pathologic responses of humans. Currently, we work on two major areas. First is the interaction of human protease, insulin-degrading enzyme (IDE) with its substrates. IDE, a 110 kDa metalloprotease, is involved in the clearance of insulin and amyloid ?, peptides crucial for the progression of diabetes and Alzheimers'disease. We have used SAXS to probe the open-closed conformational switch regulated by substrate binding as well as the allosteric regulation by the oligomerization of IDE. We recently identify macrophage inflammatory protein (MIP)-1? and MIP-1? as the novel substrate of IDE. MIP-1? and MIP-1? form high molecular weight aggregates. We used SAXS to demonstrate that MIP-1? and MIP-1? form the rod-shaped polydisperse polymers in solution. I propose to continue to use SAXS to understand the structure features of IDE and its substrates and how they interact to achieve their biological functions. Second is the interactions of toxins secreted by bacteria that cause anthrax. Anthrax bacteria also secrete >200 secreted factors. This includes three major anthrax toxins, protective antigen (PA), edema factor (EF), and lethal factor (LF) and the protein complex of PA-EF and PA-LF. We use SAXS analysis as a method to probe the structural features of purified anthrax toxins and toxin complex. We have also chosen 10 of such factors including pore-forming toxins, proteases, and cell wall modifying enzymes and will apply SAXS to probe the biophysical properties of these virulence factors.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-16
Application #
8361305
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2011-01-01
Project End
2011-12-31
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
16
Fiscal Year
2011
Total Cost
$5,914
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Nobrega, R Paul; Arora, Karunesh; Kathuria, Sagar V et al. (2014) Modulation of frustration in folding by sequence permutation. Proc Natl Acad Sci U S A 111:10562-7
Jiao, Lianying; Ouyang, Songying; Shaw, Neil et al. (2014) Mechanism of the Rpn13-induced activation of Uch37. Protein Cell 5:616-30

Showing the most recent 10 out of 100 publications