This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The WW domain is found in a large number of eukaryotic proteins implicated in a variety of cellular processes. WW domains bind proline-rich protein and peptide ligands, but the protein interaction partners of many WW domain-containing proteins in Saccharomyces cerevisiae are largely unknown. We used protein microarray technology to generate a protein interaction map for 12 of the 13 WW domains present in proteins of the yeast S. cerevisiae. We observed 587 interactions between these 12 domains and 207 proteins, most of which have not previously been described. We analyzed the representation of functional annotations within the network, identifying enrichments for proteins with peroxisomal localization, as well as for proteins involved in protein turnover and cofactor biosynthesis. We compared orthologs of the interacting proteins to identify conserved motifs known to mediate WW domain interactions, and found substantial evidence for the structural conservation of such binding motifs throughout the yeast lineages. The comparative approach also revealed that several of the WW domain-containing proteins themselves have evolutionarily conserved WW domain binding sites, suggesting a functional role for inter- or intramolecular association between proteins that harbor WW domains. On the basis of these results, we propose a model for the tuning of interactions between WW domains and their protein interaction partners. Protein microarrays provide an appealing alternative to existing techniques for the construction of protein interaction networks. Here we built a network composed of WW domain-protein interactions that illuminates novel features of WW domain-containing proteins and their protein interaction partners.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR011823-11
Application #
7420780
Study Section
Special Emphasis Panel (ZRG1-CB-H (40))
Project Start
2006-09-20
Project End
2007-08-31
Budget Start
2006-09-20
Budget End
2007-08-31
Support Year
11
Fiscal Year
2006
Total Cost
$57,897
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Xavier, Marina Amaral; Tirloni, Lucas; Pinto, Antônio F M et al. (2018) A proteomic insight into vitellogenesis during tick ovary maturation. Sci Rep 8:4698
Hollmann, Taylor; Kim, Tae Kwon; Tirloni, Lucas et al. (2018) Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int J Parasitol 48:211-224
Stieg, David C; Willis, Stephen D; Ganesan, Vidyaramanan et al. (2018) A complex molecular switch directs stress-induced cyclin C nuclear release through SCFGrr1-mediated degradation of Med13. Mol Biol Cell 29:363-375
Seixas, Adriana; Alzugaray, María Fernanda; Tirloni, Lucas et al. (2018) Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick Borne Dis 9:72-81
Wang, Zheng; Wu, Catherine; Aslanian, Aaron et al. (2018) Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7:
Luhtala, Natalie; Aslanian, Aaron; Yates 3rd, John R et al. (2017) Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner. J Biol Chem 292:611-628
Thakar, Sonal; Wang, Liqing; Yu, Ting et al. (2017) Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci U S A 114:E610-E618
Jin, Meiyan; Fuller, Gregory G; Han, Ting et al. (2017) Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep 20:895-908
Ogami, Koichi; Richard, Patricia; Chen, Yaqiong et al. (2017) An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev 31:1257-1271
Ju Lee, Hyun; Bartsch, Deniz; Xiao, Cally et al. (2017) A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat Commun 8:1456

Showing the most recent 10 out of 583 publications