This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Intron removal from tRNA precursors involves cleavage by a tRNA splicing endonuclease to yield tRNA 3'-halves beginning with a 5'-hydroxyl, and 5'-halves ending in a 2',3'-cyclic phosphate. A tRNA ligase then incorporates this phosphate into the internucleotide bond that joins the two halves. Although this 3'-P RNA splicing ligase activity was detected almost three decades ago in extracts from animal and later archaeal cells, the protein responsible was not yet identified. Here we report the purification of this ligase from Methanopyrus kandleri cells, and its assignment to the still uncharacterized RtcB protein family. Studies with recombinant Pyrobaculum aerophilum RtcB showed that the enzyme is able to join spliced tRNA halves to mature-sized tRNAs where the joining phosphodiester linkage contains the phosphate originally present in the 2',3'-cyclic phosphate. The data confirm RtcB as the archaeal RNA 3'-P ligase. Structural genomics efforts previously yielded a crystal structure of the Pyrococcus horikoshii RtcB protein containing a new protein fold and a conserved putative Zn(2+) binding cleft. This structure guided our mutational analysis of the P. aerophilum enzyme. Mutations of highly conserved residues in the cleft (C100A, H205A, H236A) rendered the enzyme inactive suggesting these residues to be part of the active site of the P. aerophilum ligase. There is no significant sequence similarity between the active sites of P. aerophilum ligase and that of T4 RNA ligase, nor ligases from plants and fungi. RtcB sequence conservation in archaea and in eukaryotes implicates eukaryotic RtcB as the long-sought animal 3'-P RNA ligase.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR011823-16
Application #
8365789
Study Section
Special Emphasis Panel (ZRG1-CB-L (40))
Project Start
2011-09-01
Project End
2012-06-30
Budget Start
2011-09-01
Budget End
2012-06-30
Support Year
16
Fiscal Year
2011
Total Cost
$12,768
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Xavier, Marina Amaral; Tirloni, Lucas; Pinto, Antônio F M et al. (2018) A proteomic insight into vitellogenesis during tick ovary maturation. Sci Rep 8:4698
Hollmann, Taylor; Kim, Tae Kwon; Tirloni, Lucas et al. (2018) Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int J Parasitol 48:211-224
Stieg, David C; Willis, Stephen D; Ganesan, Vidyaramanan et al. (2018) A complex molecular switch directs stress-induced cyclin C nuclear release through SCFGrr1-mediated degradation of Med13. Mol Biol Cell 29:363-375
Seixas, Adriana; Alzugaray, María Fernanda; Tirloni, Lucas et al. (2018) Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick Borne Dis 9:72-81
Wang, Zheng; Wu, Catherine; Aslanian, Aaron et al. (2018) Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7:
Luhtala, Natalie; Aslanian, Aaron; Yates 3rd, John R et al. (2017) Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner. J Biol Chem 292:611-628
Thakar, Sonal; Wang, Liqing; Yu, Ting et al. (2017) Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci U S A 114:E610-E618
Jin, Meiyan; Fuller, Gregory G; Han, Ting et al. (2017) Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep 20:895-908
Ogami, Koichi; Richard, Patricia; Chen, Yaqiong et al. (2017) An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev 31:1257-1271
Ju Lee, Hyun; Bartsch, Deniz; Xiao, Cally et al. (2017) A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat Commun 8:1456

Showing the most recent 10 out of 583 publications