The goals of our brain atlas are: to develop it as a tool for education; use it for pre-surgical planning and reference; and apply the anatomy as a template for segmentation by matching 1. We plan to continue to add to the number of structures in the atlas. We will also develop further tools for enhancing the shading, texture, depth, and coloration of structures. 2. We will continue to utilize these tools in the clinical environment. This will require substantial engineering work. some of which has already begun, to reduce the computational times for the elastic matching algorithms and improve the ease of setting up the correspondences between the atlases and new studies. 3. We will incorporate new matching technologies to obtain greater accuracy and automation. 4. The use of the digitized 3D atlas for surgical planning will be integrated with 3D visualization tools, along with the warping of the atlas for surgical cases. This integrated system will be used for both the planning and the intraoperative support of surgery.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR013218-03S1
Application #
6424325
Study Section
Project Start
2000-08-01
Project End
2001-07-31
Budget Start
Budget End
Support Year
3
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02115
Saito, Yukiko; Kubicki, Marek; Koerte, Inga et al. (2018) Impaired white matter connectivity between regions containing mirror neurons, and relationship to negative symptoms and social cognition, in patients with first-episode schizophrenia. Brain Imaging Behav 12:229-237
Gallardo, Guillermo; Wells 3rd, William; Deriche, Rachid et al. (2018) Groupwise structural parcellation of the whole cortex: A logistic random effects model based approach. Neuroimage 170:307-320
Ratner, Vadim; Gao, Yi; Lee, Hedok et al. (2017) Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport. Neuroimage 152:530-537
Sastry, Rahul; Bi, Wenya Linda; Pieper, Steve et al. (2017) Applications of Ultrasound in the Resection of Brain Tumors. J Neuroimaging 27:5-15
Chen, Yongxin; Georgiou, Tryphon T; Ning, Lipeng et al. (2017) Matricial Wasserstein-1 Distance. IEEE Control Syst Lett 1:14-19
Niethammer, Marc; Pohl, Kilian M; Janoos, Firdaus et al. (2017) ACTIVE MEAN FIELDS FOR PROBABILISTIC IMAGE SEGMENTATION: CONNECTIONS WITH CHAN-VESE AND RUDIN-OSHER-FATEMI MODELS. SIAM J Imaging Sci 10:1069-1103
Chen, Yongxin; Cruz, Filemon Dela; Sandhu, Romeil et al. (2017) Pediatric Sarcoma Data Forms a Unique Cluster Measured via the Earth Mover's Distance. Sci Rep 7:7035
Schabdach, Jenna; Wells 3rd, William M; Cho, Michael et al. (2017) A Likelihood-Free Approach for Characterizing Heterogeneous Diseases in Large-Scale Studies. Inf Process Med Imaging 10265:170-183
Wachinger, Christian; Brennan, Matthew; Sharp, Greg C et al. (2017) Efficient Descriptor-Based Segmentation of Parotid Glands With Nonlocal Means. IEEE Trans Biomed Eng 64:1492-1502
Chen, Yongxin; Georgiou, Tryphon; Pavon, Michele et al. (2017) Robust transport over networks. IEEE Trans Automat Contr 62:4675-4682

Showing the most recent 10 out of 507 publications