This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Transposable elements are the drivers of genome evolution. Phage Mu is the most well-studied and most efficient transposable element known. The chemistry of transposition occurs within a stable nucleoprotein complex called the 'transpososome'which is built bridging interactions among three DNA sites - the left (L) and right (R) ends of Mu and an enhancer element (E) - mediated by the six subunits of the transposase protein MuA and a dimer of the E. coli protein HU. The DNA follows a well-defined path within the transpososome, trapping five supercoil nodes. The particular arrangement of DNA and protein components lends extraordinary stability to the transpososome and regulates the frequency, precision, directionality and mechanism of transposition. The structure of the transpososome, therefore, holds the key to understanding all of these attributes. and ultimately to explaining the runaway genetic success of transposable elements throughout the biological world.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR017573-08
Application #
7956447
Study Section
Special Emphasis Panel (ZRG1-CB-B (40))
Project Start
2009-05-01
Project End
2010-04-30
Budget Start
2009-05-01
Budget End
2010-04-30
Support Year
8
Fiscal Year
2009
Total Cost
$12,892
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Scapin, Giovanna; Dandey, Venkata P; Zhang, Zhening et al. (2018) Structure of the insulin receptor-insulin complex by single-particle cryo-EM analysis. Nature 556:122-125
Kulczyk, Arkadiusz W; Moeller, Arne; Meyer, Peter et al. (2017) Cryo-EM structure of the replisome reveals multiple interactions coordinating DNA synthesis. Proc Natl Acad Sci U S A 114:E1848-E1856
Sherman, Michael B; Kakani, Kishore; Rochon, D'Ann et al. (2017) Stability of Cucumber Necrosis Virus at the Quasi-6-Fold Axis Affects Zoospore Transmission. J Virol 91:
Geary, Cody; Chworos, Arkadiusz; Verzemnieks, Erik et al. (2017) Composing RNA Nanostructures from a Syntax of RNA Structural Modules. Nano Lett 17:7095-7101
Razinkov, Ivan; Dandey, Venkat; Wei, Hui et al. (2016) A new method for vitrifying samples for cryoEM. J Struct Biol 195:190-198
Short, James R; Speir, Jeffrey A; Gopal, Radhika et al. (2016) Role of Mitochondrial Membrane Spherules in Flock House Virus Replication. J Virol 90:3676-83
Guenaga, Javier; de Val, Natalia; Tran, Karen et al. (2015) Well-ordered trimeric HIV-1 subtype B and C soluble spike mimetics generated by negative selection display native-like properties. PLoS Pathog 11:e1004570
McCullough, John; Clippinger, Amy K; Talledge, Nathaniel et al. (2015) Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350:1548-51
McNulty, Reginald; Lokareddy, Ravi Kumar; Roy, Ankoor et al. (2015) Architecture of the Complex Formed by Large and Small Terminase Subunits from Bacteriophage P22. J Mol Biol 427:3285-3299
Lee, Jeong Hyun; Leaman, Daniel P; Kim, Arthur S et al. (2015) Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nat Commun 6:8167

Showing the most recent 10 out of 189 publications