UC DAVIS SUPERFUND RESEARCH PROGRAM Superfund sites are diverse, and many include unknown chemicals, chemicals of unknown toxicity and/or toxic degradation products. Currently, methods to detect, prioritize, and remediate these chemicals are incomplete or nonexistent. The UC Davis Superfund Research Center (UCD-SRC) will conduct research to: (i) improve understanding of the mechanisms by which hazardous chemicals produce adverse health effects, (ii) develop, validate and integrate novel methods to evaluate chemical exposures, levels of contamination, and health risks, and (iii) develop innovative remediation strategies to reduce hazardous substance exposure and toxicity. To achieve these goals the SRC consists of 5 integrated projects, 2 research support cores, a training core, a community engagement core, a research translation core and an administrative core. The UCD-SRC will use integrated chromatographic, biosensor and cell based technologies to detect and identify contaminants and develop innovative approaches for bioremediation. Rapid immunochemical and cell based analysis will supplement classical technologies for the evaluation of sites, as well as determining human susceptibility, exposure and effect. Fundamental mechanisms of toxic action of selected chemicals will be explored to predict risk and develop new biomarkers. This mechanistic knowledge will be extended in vivo with an emphasis on mechanism of toxicity. We are expanding the use of transcriptomics, proteomics, metabolomics and integrated bioinformatics technologies to discover new mechanisms of action of hazardous materials and biomarkers for their action and to connect hazardous substance exposures to organism level effects. The biomarkers developed in this project will serve as biological dosimeters in exposure studies. All aspects of the program will be connected to our Community Engagement Core, and subject to community approval will be demonstrated on Yurok Tribal Lands. Technologies developed by the SRC will be tested at field sites and transferred to end users through a research translation core. Program Relevance We will develop sensitive systems for evaluating and mitigating the risk of hazardous chemicals on human populations and the environment using biomarkers of both exposure and effect.

Public Health Relevance

UC DAVIS SUPERFUND RESEARCH PROGRAM The UC Davis Superfund Research Center conducts research to: (i) improve understanding of the mechanisms by which hazardous chemicals produce adverse health effects, (b) develop, validate and integrate novel methods to evaluate chemical exposures, levels of contamination, and health risks, and (c) develops innovative remediation strategies to reduce hazardous substance exposure and toxicity. These activities will improve the ability of the National Superfund Program to address legacy and emerging contaminants and associated transformation products to more comprehensively protect the U.S. population from health risks posed by hazardous substances.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-32
Application #
9917774
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Henry, Heather F
Project Start
1997-04-01
Project End
2022-03-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
32
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California Davis
Department
Zoology
Type
Earth Sciences/Resources
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
?ertíková Chábová, V?ra; Kujal, Petr; Škaroupková, Petra et al. (2018) Combined Inhibition of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease. Kidney Blood Press Res 43:329-349
Kodani, Sean D; Bhakta, Saavan; Hwang, Sung Hee et al. (2018) Identification and optimization of soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase. Bioorg Med Chem Lett 28:762-768
Rand, Amy A; Helmer, Patrick O; Inceoglu, Bora et al. (2018) LC-MS/MS Analysis of the Epoxides and Diols Derived from the Endocannabinoid Arachidonoyl Ethanolamide. Methods Mol Biol 1730:123-133
Li, Xueshu; Holland, Erika B; Feng, Wei et al. (2018) Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environ Sci Pollut Res Int 25:16508-16521
Mao, Yuxin; Pan, Yang; Li, Xuan et al. (2018) High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip. Lab Chip 18:2720-2729
Burmistrov, Vladimir; Morisseau, Christophe; Harris, Todd R et al. (2018) Effects of adamantane alterations on soluble epoxide hydrolase inhibition potency, physical properties and metabolic stability. Bioorg Chem 76:510-527
Stamou, Marianna; Grodzki, Ana Cristina; van Oostrum, Marc et al. (2018) Fc gamma receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. J Neuroinflammation 15:7
Huo, Jingqian; Li, Zhenfeng; Wan, Debin et al. (2018) Development of a Highly Sensitive Direct Competitive Fluorescence Enzyme Immunoassay Based on a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of 3-Phenoxybenzoic Acid in Urine. J Agric Food Chem 66:11284-11290
Zamuruyev, Konstantin O; Borras, Eva; Pettit, Dayna R et al. (2018) Effect of temperature control on the metabolite content in exhaled breath condensate. Anal Chim Acta 1006:49-60
Zamuruyev, Konstantin O; Schmidt, Alexander J; Borras, Eva et al. (2018) Power-efficient self-cleaning hydrophilic condenser surface for portable exhaled breath condensate (EBC) metabolomic sampling. J Breath Res 12:036020

Showing the most recent 10 out of 1149 publications