Although reactive electrophiles are important contributors to states of human health and disease, these molecules are generally overlooked in exposomic investigations. For example, many electrophiles are inherently toxic and carcinogenic because they modify human DNA and proteins, but are too reactive to be measured in blood. One approach for investigating exposures to reactive electrophiles involves measurement of adducts formed from reactions with blood proteins. Human serum albumin (HSA) contains a nucleophilic hotspot (Cys34), which is the major scavenger of reactive oxygen species and other electrophiles that enter the blood from inhalation, ingestion and metabolism. Our laboratory has developed an untargeted assay (`adductomics') for profiling HSA-Cys34 adducts and has compiled a library of over a hundred such adducts detected in human blood. Interestingly, some adducts are specific to particular exposures (e.g., benzene oxide from benzene) while others relate more generally to oxidative stress and dysregulation of metabolic pathways (e.g. Cys34 oxidation products and disulfides of circulating thiols). We hypothesize that this combination of chemical-specific and oxidative-stress adducts in blood establishes patterns or `signatures' of adducts that can be related to subjects' exposures to Superfund contaminants and their interactions with environmental stressors. By profiling HSA adducts in blood from cross sectional studies of populations heavily exposed to three Superfund chemicals (benzene, PAHs & arsenic), we propose to find their adductomic signatures. Then, by targeting these adductomic signatures in archived serum from a large cohort study being conducted by the National Cancer Institute in Shanghai, China, we will investigate contributions of benzene exposure on risks of lymphoid and myeloid cancers and of PAH and arsenic exposures on risks of lung cancer. Project 4 will directly address Problems 3 & 4 on mixtures/complexity by examining a plethora of adducts associated with exposures to Superfund chemicals and environmental stressors. Since Project 4 will explore the use of adductomic signatures as biomarkers of past exposure in prospective studies of cancers, it also directly addresses Problem 2. Project 4 will provide insights to Project 3 regarding protein modifications and bioactivation pathways, to Project 1 regarding mechanisms by which arsenic causes cancer in humans, either alone or in conjunction with psycho-social stress and obesity, and to Projects 2 and 5 regarding contributions of reactive intermediates to toxicity and degradation.

Public Health Relevance

PROJECT 4: NARRATIVE Because cancers are caused by reactive metabolic products of some Superfund chemicals, we developed a technology, called `adductomics', that measures signatures (`adducts') of these reactive products in blood. By measuring adductomes in blood from subjects with documented exposures to three carcinogenic Superfund chemicals (benzene, arsenic and PAHs), we will find their adduct signatures. Then we will measure the adduct signatures in cancer cases and controls to determine whether these Superfund chemicals contributed to cancer risks.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004705-32
Application #
9919586
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
32
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California Berkeley
Department
Type
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94710
Rappaport, Stephen M (2018) Redefining environmental exposure for disease etiology. NPJ Syst Biol Appl 4:30
Tachachartvanich, Phum; Sangsuwan, Rapeepat; Ruiz, Heather S et al. (2018) Assessment of the Endocrine-Disrupting Effects of Trichloroethylene and Its Metabolites Using in Vitro and in Silico Approaches. Environ Sci Technol 52:1542-1550
Guyton, Kathryn Z; Rieswijk, Linda; Wang, Amy et al. (2018) Key Characteristics Approach to Carcinogenic Hazard Identification. Chem Res Toxicol :
Roh, Taehyun; Steinmaus, Craig; Marshall, Guillermo et al. (2018) Age at Exposure to Arsenic in Water and Mortality 30-40 Years After Exposure Cessation. Am J Epidemiol 187:2297-2305
Daniels, Sarah I; Chambers, John C; Sanchez, Sylvia S et al. (2018) Elevated Levels of Organochlorine Pesticides in South Asian Immigrants Are Associated With an Increased Risk of Diabetes. J Endocr Soc 2:832-841
Guyton, Kathryn Z; Rusyn, Ivan; Chiu, Weihsueh A et al. (2018) Application of the key characteristics of carcinogens in cancer hazard identification. Carcinogenesis 39:614-622
Grigoryan, Hasmik; Edmands, William M B; Lan, Qing et al. (2018) Adductomic signatures of benzene exposure provide insights into cancer induction. Carcinogenesis 39:661-668
Barazesh, James M; Prasse, Carsten; Wenk, Jannis et al. (2018) Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis. Environ Sci Technol 52:195-204
Counihan, Jessica L; Wiggenhorn, Amanda L; Anderson, Kimberly E et al. (2018) Chemoproteomics-Enabled Covalent Ligand Screening Reveals ALDH3A1 as a Lung Cancer Therapy Target. ACS Chem Biol 13:1970-1977
Lavy, Adi; Keren, Ray; Yu, Ke et al. (2018) A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges. Environ Microbiol 20:800-814

Showing the most recent 10 out of 629 publications