(Project 3: Pawel Kiela, Paul Carini, and Albert Barbern) Legacy mine tailings that remain after extraction of economic metals are frequently enriched with co-occurring contaminants such as arsenic (As) that pose serious health hazards to neighboring communities and ecosystems. As-ingestion has been associated with diabetes, numerous cancers, and cardiovascular disorders. The mode of action for As toxicity is not clear; however, the degree of toxicity is associated with the valence and the methylation state of As metabolites (e.g. trivalent As species, iAsIII, MMAIII, and DMAIII ,are two times more cytotoxic than iAsV; methylated pentavalent arsenicals are 10-fold less cytotoxic than AsV). The gut microbiome is a primary point of contact for As in the host because oral ingestion is the principal exposure route. In addition, in vitro studies have demonstrated the capacity of human colon microbiota to biotransform iAs to both more and less toxic forms. Thus, accurate As risk assessment requires understanding of presystemic contributions by the gut microbiome to the bioaccessibility and speciation of the host As-load. The overall objectives of this proposal are to 1) contextualize the composition of the mouse gut microbiome with its functional capacity to metabolize As and to 2) evaluate the capacity of defined As- transforming microbial communities to affect in vivo diabetic outcomes following As exposure. The multidisciplinary team will employ a unique approach to identify specific associations between the composition of the gut microbiome, its genetic and functional capacity to sequester and/or transform As, and its capacity to either exacerbate or mitigate host diabetic outcomes in response to As exposure. Routine microbial taxonomic (16S rRNA gene amplicon profiling) and functional gene (shotgun metagenome) analyses will identify the impact of host sex, age and As-exposure on mouse fecal community composition. This molecular analysis will be combined with function-based high throughput culture analysis of the same fecal communities to facilitate the design of 120 distinct synthetic microbial communities (SynComs). The functional capacities of each SynCom to transform/sequester iAs will be identified and will potentially capture emergent properties of microbially-mediated As biotransformation that might be missed in studies using isolated phylotypes. The SynComs will be clustered in functional guilds with differing capacities to increase or decrease the As-load experienced by the host. These SynComs will be tested in germ-free mice to evaluate the capacity of specific microbial consortia with distinct As biotransformation capacities to modulate diabetic outcomes of As exposure. It is hypothesized that microbial communities that reduce As toxicity and associated diabetic outcomes can be exploited as potential probiotics. This hypothesis will be tested through verification of the ability of positive- outcome SynComs to colonize a specific pathogen free (SPF) mouse host and prevent or reduce pro-diabetic effects of iAsIII exposure.

Public Health Relevance

(Project 3: Pawel Kiela, Paul Carini, and Albert Barbern) Arsenic ingestion has been associated with diabetes, numerous cancers and cardiovascular disorders. Biotransformation of oral arsenic ingestion by the gut microbiome has potential to modulate the arsenic-load experienced by the host, and thus, must be incorporated into the risk assessment of arsenic ingestion. Microbial communities that reduce presystemic arsenic-toxicity can be exploited as potential probiotics to reduce negative health outcomes that are associated with chronic arsenic exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES004940-31
Application #
9841041
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
2025-01-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
31
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Delikhoon, Mahdieh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran. Environ Pollut 242:938-951
Hammond, Corin M; Root, Robert A; Maier, Raina M et al. (2018) Mechanisms of Arsenic Sequestration by Prosopis juliflora during the Phytostabilization of Metalliferous Mine Tailings. Environ Sci Technol 52:1156-1164
Yan, Ni; Zhong, Hua; Brusseau, Mark L (2018) The natural activation ability of subsurface media to promote in-situ chemical oxidation of 1,4-dioxane. Water Res 149:386-393
Madeira, Camila L; Field, Jim A; Simonich, Michael T et al. (2018) Ecotoxicity of the insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) and its reduced metabolite 3-amino-1,2,4-triazol-5-one (ATO). J Hazard Mater 343:340-346
Liu, Pengfei; Rojo de la Vega, Montserrat; Sammani, Saad et al. (2018) RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A 115:E10352-E10361
Thomas, Andrew N; Root, Robert A; Lantz, R Clark et al. (2018) Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM10 emissions from sulfide mine tailings. Geohealth 2:118-138
Yan, Ni; Liu, Fei; Liu, Boyang et al. (2018) Treatment of 1,4-dioxane and trichloroethene co-contamination by an activated binary persulfate-peroxide oxidation process. Environ Sci Pollut Res Int :
Dehghani, Mansooreh; Sorooshian, Armin; Nazmara, Shahrokh et al. (2018) Concentration and type of bioaerosols before and after conventional disinfection and sterilization procedures inside hospital operating rooms. Ecotoxicol Environ Saf 164:277-282
Keshavarzi, Behnam; Abbasi, Sajjad; Moore, Farid et al. (2018) Contamination Level, Source Identification and Risk Assessment of Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in Street Dust of an Important Commercial Center in Iran. Environ Manage 62:803-818
Dodson, Matthew; de la Vega, Montserrat Rojo; Harder, Bryan et al. (2018) Low-level arsenic causes proteotoxic stress and not oxidative stress. Toxicol Appl Pharmacol 341:106-113

Showing the most recent 10 out of 497 publications