Soils and waters with high levels of toxic metals such as cadmium (Cd), arsenic (As), lead (Pb) and mercury (Hg) are detrimental to human and environmental health. These four metals are among the Superfund;'s top five priority hazardous substances. Studies suggest that uptake of heavy metals into plant via the root system could provide a potent and cost effective approach for toxic metal removal and remediation of soils and waters. In plants and fungi, phytochelatins are major heavy metal chelating and detoxifying thiolate peptides, that form complexes with and detoxify heavy metals, including Cd, Zn, Pb, Hg and based on recent research also As. The enzyme phytochelatin synthase (PCS) produces phytochelatin, thus functioning as a major catalytic metal detoxification mechanisms in plants. However genes encoding phytochelatin synthases, had not yet been identified. We have recently cloned a new gene family (PCS) encoding phytochelatin synthases in plants and fungi. Expression of PCS cDNAs in S. cerevisiae dramatically enhance resistance to cadmium. Disruption of the PCS genes in S. pombe and Arabidopsis thaliana produces increased heavy metal sensitivity. Recombinant PCS proteins synthesize phytochelatins in vitro. We will test the hypotheses that stress-signaling pathways contribute to PCS induction and detoxification and that transgenic expression of PCS genes can, together with other metal-interacting mechanisms, enhance heavy metal hyper-accumulation and removal by plants. To test these hypotheses we will: (I) Characterize signaling mechanisms that induce PCS expression. (II) Characterize PCS expression and localization in Brassica juncea, which is one of the major plant species being studied for heavy metal biomediation. (III) Pursue transgenic over-expression in plants of PCS together with associated metal detoxification mechanisms to test for enhanced heavy metal tolerance and accumulation and (IV) provide selected transgenic lines to Phytotech Inc to include in field trials on super fund sites. (V) Pursue novel genetic activation-tagging screens in Arabidopsis and Cd-induced microarray analyses to identify new genes and pathways involved in heavy metal accumulation in plants. Results from these studies could play a central role in the development of future phytoremediation strategies for heavy metal uptake and biological removal of heavy metals form contaminated soils and waters.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES010337-03
Application #
6577797
Study Section
Special Emphasis Panel (ZES1)
Project Start
2002-04-01
Project End
2003-03-31
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
$175,014
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Tripathi, Anupriya; Debelius, Justine; Brenner, David A et al. (2018) The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:397-411
Chen, Shujuan; Tukey, Robert H (2018) Humanized UGT1 Mice, Regulation of UGT1A1, and the Role of the Intestinal Tract in Neonatal Hyperbilirubinemia and Breast Milk-Induced Jaundice. Drug Metab Dispos 46:1745-1755
Desai, Archita P; Mohan, Prashanthinie; Roubal, Anne M et al. (2018) Geographic Variability in Liver Disease-Related Mortality Rates in the United States. Am J Med 131:728-734
Ajmera, Veeral; Park, Charlie C; Caussy, Cyrielle et al. (2018) Magnetic Resonance Imaging Proton Density Fat Fraction Associates With Progression of Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 155:307-310.e2
Ahmadian, Maryam; Liu, Sihao; Reilly, Shannon M et al. (2018) ERR? Preserves Brown Fat Innate Thermogenic Activity. Cell Rep 22:2849-2859
Tapper, Elliot B; Loomba, Rohit (2018) Nonalcoholic fatty liver disease, metabolic syndrome, and the fight that will define clinical practice for a generation of hepatologists. Hepatology 67:1657-1659
Tripathi, Anupriya; Debelius, Justine; Brenner, David A et al. (2018) Publisher Correction: The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:785
Zhang, Yuqin; Nasser, Victoria; Pisanty, Odelia et al. (2018) A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nat Commun 9:4204
Tõldsepp, Kadri; Zhang, Jingbo; Takahashi, Yohei et al. (2018) Mitogen-activated protein kinases MPK4 and MPK12 are key components mediating CO2 -induced stomatal movements. Plant J 96:1018-1035
Li, Zixing; Takahashi, Yohei; Scavo, Alexander et al. (2018) Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proc Natl Acad Sci U S A 115:E4522-E4531

Showing the most recent 10 out of 404 publications