Environmentally persistent free radicals (EPFRs) have been found at levels 30 times higher in the pentachlorophenol (PCP) contaminated soils from a Superfund site - a former wood-treatment facility, than in pristine soil samples from the neighboring area. This finding is important due to the widespread use of PCP, potential of toxicity of EPFRs, potential exposure to these EFPRs due to wind blown dust from the site, their migration to and through ground waters as well as dermal exposure. Thus, a fundamental understanding of how the EPFRs can be formed in soils that have been contaminated with PCP is needed. Due to the complexity of soils, a number of pathways could account for the formation of EPFRs. This project will systematically explore the formation of EPFRs within PCP-contaminated soils through three Specific Aims: 1) Physically separate, chemically edit and characterize the organic and inorganic components of both contaminated and non-contaminated soils; 2) Determine the main soil component(s) responsible for the formation of EPFRs in the contaminated soil; and 3) Utilize model systems based on the findings from Specific Aim-1 to gain insight into the natural 'in-situ' formation of radicals in the contaminated soil. This project is unique as it addresses real world samples. This means that this project will act as a testing ground for the universality of some of the concepts derived for thermal EPFR formation pathways in Project 1, and in doing so, will act as a feedback loop to Project 1. This feedback loop will be further strengthened by collaborations with Project 6. Select samples from Aim-1, Aim-2, and Aim-3 will be provided to the biomedical Projects 2, 4 and 5 through the collaboration with the Materials Core. In addition to the samples, this project will provide the basic chemistry to understand any observed cardiac and pulmonary dysfunction induced by inhalation of these EPFR-containing samples.

Public Health Relevance

The potential for the formation of EPFRs from chlorinated phenols in-situ in contaminated soils is of great concern due to potential toxicity of EPFRs and exposure to these EPFRs via inhalation of air blown dust, dermal contact and ingestion via contaminated ground waters. Due to the complexity of soils, and the associated difficulty in analyzing them, EPFRs within soils represent a previously unidentified environmental threat.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
3P42ES013648-07S3
Application #
9303530
Study Section
Special Emphasis Panel (ZES1-SET-V)
Program Officer
Carlin, Danielle J
Project Start
2009-08-19
Project End
2017-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
7
Fiscal Year
2016
Total Cost
$135,020
Indirect Cost
$43,790
Name
Louisiana State University A&M Col Baton Rouge
Department
Type
DUNS #
075050765
City
Baton Rouge
State
LA
Country
United States
Zip Code
70803
Dugas, Tammy R (2018) Unraveling mechanisms of toxicant-induced oxidative stress in cardiovascular disease. Curr Opin Toxicol 7:1-8
Hijano, Diego R; Siefker, David T; Shrestha, Bishwas et al. (2018) Type I Interferon Potentiates IgA Immunity to Respiratory Syncytial Virus Infection During Infancy. Sci Rep 8:11034
Haywood, Benjamin J; White, John R; Cook, Robert L (2018) Investigation of an early season river flood pulse: Carbon cycling in a subtropical estuary. Sci Total Environ 635:867-877
Connick, J Patrick; Reed, James R; Backes, Wayne L (2018) Characterization of Interactions Among CYP1A2, CYP2B4, and NADPH-cytochrome P450 Reductase: Identification of Specific Protein Complexes. Drug Metab Dispos 46:197-203
Potter, Phillip M; Guan, Xia; Lomnicki, Slawomir M (2018) Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol. Chemosphere 203:96-103
Harmon, Ashlyn C; Hebert, Valeria Y; Cormier, Stephania A et al. (2018) Particulate matter containing environmentally persistent free radicals induces AhR-dependent cytokine and reactive oxygen species production in human bronchial epithelial cells. PLoS One 13:e0205412
Jaligama, Sridhar; Patel, Vivek S; Wang, Pingli et al. (2018) Radical containing combustion derived particulate matter enhance pulmonary Th17 inflammation via the aryl hydrocarbon receptor. Part Fibre Toxicol 15:20
Oyana, Tonny J; Podila, Pradeep; Wesley, Jagila Minso et al. (2017) Spatiotemporal patterns of childhood asthma hospitalization and utilization in Memphis Metropolitan Area from 2005 to 2015. J Asthma 54:842-855
Deese, Rachel D; Weldeghiorghis, Thomas K; Haywood, Benjamin J et al. (2017) Influence of surfactants and humic acids on Artemia Franciscana's embryonic phospho-metabolite profile as measured by31P NMR. Aquat Toxicol 186:188-195
Reed, James R; Backes, Wayne L (2017) Physical Studies of P450-P450 Interactions: Predicting Quaternary Structures of P450 Complexes in Membranes from Their X-ray Crystal Structures. Front Pharmacol 8:28

Showing the most recent 10 out of 108 publications