The aim of this proposal is to test directly in the mouse brain an old and widely believed idea that excess calcium entering a neuron through glutamate receptors can cause neurodegenerative brain disease as is observed in Alzheimer's patients. This will be accomplished by genetic engineering mice so that they express glutamate receptors which flux abnormally high amounts of calcium into the cell during normal synaptic transmission. The experiments will make use of recombinant DNA technology and the production of mutant mice by genetic engineering methods. Gene targeting methods will be used to knockout or disrupt glutamate receptor genes. Point mutations will be introduced into glutamate receptor genes using the recently developed """"""""Hit and Run"""""""" technology. The mutant mice will be analyzed using a variety of techniques. The brains will be sectioned and examined for gross morphology changes and evidence of cell death. The slice preparation will be used to measure synaptic transmission and the ability of the synapses to undergo synaptic plasticity phenomenon such as LTP and LDP. The Morris maze will be used to test for learning and memory function.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005131-15
Application #
6267251
Study Section
Project Start
1998-04-15
Project End
1999-03-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
15
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
González, Hector M; Tarraf, Wassim; Harrison, Kimystian et al. (2018) Midlife cardiovascular health and 20-year cognitive decline: Atherosclerosis Risk in Communities Study results. Alzheimers Dement 14:579-589
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Jurick, Sarah M; Weissberger, Gali H; Clark, Lindsay R et al. (2018) Faulty Adaptation to Repeated Face-Name Associative Pairs in Mild Cognitive Impairment is Predictive of Cognitive Decline. Arch Clin Neuropsychol 33:168-183
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Lake, Blue B; Chen, Song; Sos, Brandon C et al. (2018) Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol 36:70-80
Zlatar, Zvinka Z; Muniz, Martha; Galasko, Douglas et al. (2018) Subjective Cognitive Decline Correlates With Depression Symptoms and Not With Concurrent Objective Cognition in a Clinic-Based Sample of Older Adults. J Gerontol B Psychol Sci Soc Sci 73:1198-1202
Brenowitz, Willa D; Han, Fang; Kukull, Walter A et al. (2018) Treated hypothyroidism is associated with cerebrovascular disease but not Alzheimer's disease pathology in older adults. Neurobiol Aging 62:64-71
Blue, Elizabeth E; Bis, Joshua C; Dorschner, Michael O et al. (2018) Genetic Variation in Genes Underlying Diverse Dementias May Explain a Small Proportion of Cases in the Alzheimer's Disease Sequencing Project. Dement Geriatr Cogn Disord 45:1-17

Showing the most recent 10 out of 914 publications