The Clinical Core of this project will function to carefully characterize a cohort of subjects with scleroderma, drawn from two large referral centers, followed prospectively to link their clinical data, disease progression and severity with biologic mechanistic data.
The specific aims of this proposal are:
Aim 1 : To develop and maintain a clinical data repository of key clinical disease parameters in a prospectively followed cohort of subjects with scleroderma and match these clinical data with subject tissue and blood samples, which will be stored and maintained by the Clinical Core. The clinical core will also coordinate the collection of blood samples for preparation of RNA from peripheral blood mononuclear cells (PBMC) to be carried out by the microarray core. It will also coordinate the collection of skin biopsies for fixation and histological evaluation and for RNA preparation in coordination with the microarray core.
Aim 2 : To provide investigators in Projects 1, 2 and 3 with clinical data and statistical resources to perform analyses correlating gene array and biomarker data with matched clinical data collected longitudinally.

Public Health Relevance

This project proposes to identify markers and predictors of clinical subsets and/or complications of scleroderma such as pulmonary hypertension, progression of skin involvement and development of interstitial lung disease. This biomarker identification will facilitate understanding of the causes of the disease and provide opportunities for intervention.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Specialized Center (P50)
Project #
5P50AR060780-02
Application #
8380648
Study Section
Special Emphasis Panel (ZAR1-MLB)
Project Start
Project End
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
2
Fiscal Year
2012
Total Cost
$403,692
Indirect Cost
$134,244
Name
Boston University
Department
Type
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Stifano, Giuseppina; Sornasse, Thierry; Rice, Lisa M et al. (2018) Skin Gene Expression Is Prognostic for the Trajectory of Skin Disease in Patients With Diffuse Cutaneous Systemic Sclerosis. Arthritis Rheumatol 70:912-919
Franks, Jennifer M; Cai, Guoshuai; Whitfield, Michael L (2018) Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data. Bioinformatics 34:1868-1874
Apostolidis, Sokratis A; Stifano, Giuseppina; Tabib, Tracy et al. (2018) Single Cell RNA Sequencing Identifies HSPG2 and APLNR as Markers of Endothelial Cell Injury in Systemic Sclerosis Skin. Front Immunol 9:2191
Fleury, Michelle; Belkina, Anna C; Proctor, Elizabeth A et al. (2018) Increased Expression and Modulated Regulatory Activity of Coinhibitory Receptors PD-1, TIGIT, and TIM-3 in Lymphocytes From Patients With Systemic Sclerosis. Arthritis Rheumatol 70:566-577
Moll, Matthew; Christmann, Romy B; Zhang, Yuqing et al. (2018) Patients with systemic sclerosis-associated pulmonary arterial hypertension express a genomic signature distinct from patients with interstitial lung disease. J Scleroderma Relat Disord 3:242-248
Meiners, Silke; Evankovich, John; Mallampalli, Rama K (2018) The ubiquitin proteasome system as a potential therapeutic target for systemic sclerosis. Transl Res 198:17-28
Rice, Lisa M; Mantero, Julio C; Stratton, Eric A et al. (2018) Serum biomarker for diagnostic evaluation of pulmonary arterial hypertension in systemic sclerosis. Arthritis Res Ther 20:185
Lafyatis, Robert; Mantero, Julio C; Gordon, Jessica et al. (2017) Inhibition of ?-Catenin Signaling in the Skin Rescues Cutaneous Adipogenesis in Systemic Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Trial of C-82. J Invest Dermatol 137:2473-2483
Grzegorzewska, Agnieszka P; Seta, Francesca; Han, Rong et al. (2017) Dimethyl Fumarate ameliorates pulmonary arterial hypertension and lung fibrosis by targeting multiple pathways. Sci Rep 7:41605
Taroni, Jaclyn N; Greene, Casey S; Martyanov, Viktor et al. (2017) A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med 9:27

Showing the most recent 10 out of 70 publications