Triple-Negative Breast Cancers (TNBC = negative on clinical assays for ER, PR and HER2) are among the most clinically challenging because of their inherent aggressive biology and lack of treatment options (typically limited to chemotherapy only). These tumors are also more common in young African American women, thus contributing to racial disparities and mortality. To advance our knowledge of the biology of TNBC, we believe it critical to precisely define the biological entities that are present within this known heterogeneous group, to next determine their driving biology, and to lastly employ robust biomarkers for defining more homogeneous subgroups of TNBC for pairing with the appropriate targeted drug(s). We hypothesize that TNBC are composed of two main biologically distinct groups (i.e. Basal-like and Claudin-low subtypes), and that the best way to make therapeutic advances is to comprehensively study these subtypes to identify their unique and potentially targetable molecular features. We hypothesize that a high proportion of Basal-like breast cancers have evidence of a DNA repair deficiency caused by either loss of BRCA1/2, or loss of chromosome 5q, which contains many genes crucial to DNA repair (RAD17, RAD50, UIMC1). Conversely, Claudin-low tumors do not share these defects, but have unique properties including an active immune infiltrate and evidence of epithelial-to-mesenchymal transition. We will test the hypothesis that DNA repair defects, and differences in growth factor signaling pathways, can be used to therapeutically target TNBC by 1) using multiple validated pre-clinical murine models and primary human tumor xenografts, and testing promising new targeted agents (PARP inhibitors, PIKSCA inhibitors and MEK inhibitors), 2) combinations of these agents, and combinations with DNA-damaging chemotherapuetics (carboplatin), and 3) by studying tumor samples from 4 randomized neoadjuvant clinical trials testing carboplatin and/or ABT- 888 in TNBC patients with the hypothesis that these DNA damage-inducing agents will be particularly effective on tumors that have a profound DNA repair defect. We will perform gene expression profiling and DNA copy number analyses to test pre-defined genomic signatures and copy number changes as markers of responsiveness, and for de novo profile discovery. Our across-species comparative biology approach merges pre-clinical models with human clinical trials, and if successful, we will identify new targeted agents for TNBC along with companion diagnostics.

Public Health Relevance

Breast cancer is the second most common cause of cancer deaths in women in the US each year, with Triple Negative Breast Cancers being overrepresented within these deaths and are among the most clinically challenging because of their paucity of treatment options. Therefore, it is imperative to understand the driving biology of TNBC, and then to target this with the right drugs so that improved outcomes can be achieved.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA058223-20
Application #
8547138
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
20
Fiscal Year
2013
Total Cost
$226,099
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Tanioka, Maki; Mott, Kevin R; Hollern, Daniel P et al. (2018) Identification of Jun loss promotes resistance to histone deacetylase inhibitor entinostat through Myc signaling in luminal breast cancer. Genome Med 10:86
Tanioka, Maki; Fan, Cheng; Parker, Joel S et al. (2018) Integrated Analysis of RNA and DNA from the Phase III Trial CALGB 40601 Identifies Predictors of Response to Trastuzumab-Based Neoadjuvant Chemotherapy in HER2-Positive Breast Cancer. Clin Cancer Res 24:5292-5304
Mundt, Filip; Rajput, Sandeep; Li, Shunqiang et al. (2018) Mass Spectrometry-Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Res 78:2732-2746
Takaku, Motoki; Grimm, Sara A; Roberts, John D et al. (2018) GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun 9:1059
Butler, Eboneé N; Bensen, Jeannette T; Chen, Mengjie et al. (2018) Prediagnostic Smoking Is Associated with Binary and Quantitative Measures of ER Protein and ESR1 mRNA Expression in Breast Tumors. Cancer Epidemiol Biomarkers Prev 27:67-74
Echavarria, Isabel; López-Tarruella, Sara; Picornell, Antoni et al. (2018) Pathological Response in a Triple-Negative Breast Cancer Cohort Treated with Neoadjuvant Carboplatin and Docetaxel According to Lehmann's Refined Classification. Clin Cancer Res 24:1845-1852
Cai, Ling; Tsai, Yi-Hsuan; Wang, Ping et al. (2018) ZFX Mediates Non-canonical Oncogenic Functions of the Androgen Receptor Splice Variant 7 in Castrate-Resistant Prostate Cancer. Mol Cell 72:341-354.e6
Bensen, Jeannette T; Graff, Mariaelisa; Young, Kristin L et al. (2018) A survey of microRNA single nucleotide polymorphisms identifies novel breast cancer susceptibility loci in a case-control, population-based study of African-American women. Breast Cancer Res 20:45
Puvanesarajah, Samantha; Nyante, Sarah J; Kuzmiak, Cherie M et al. (2018) PAM50 and Risk of Recurrence Scores for Interval Breast Cancers. Cancer Prev Res (Phila) 11:327-336
Knott, Simon R V; Wagenblast, Elvin; Khan, Showkhin et al. (2018) Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554:378-381

Showing the most recent 10 out of 598 publications