The first and foremost goal of the Tissue Acquisition, Pathology, and Clinical Data (TAPCD) Core is to maintain and expand the existing repository for specimens, including tissues, blood and urine from patients with kidney tumors that have given consent to link their samples to clinical data. Included in this component are the collection, freezing, and storage of fresh samples of kidney cancer and paired non-tumor tissue; the collection, processing and storage of blood and urine; the identification and provision of samples of fixed tissues, including construction of tissue microarrays (TMAs) from biopsy and nephrectomy samples obtained from patients who have consented to allow analysis of these tissues. The caTissue system, which is the NCI caBIG's biorepository tool for biospecimen inventory management, is currently used to track specimens through every step of the requesting, shipping, and receiving process through the use of barcode technology. Importantly, the TAPCD Core will continue to maintain a database of clinical data (CRIS) on all consenting RCC patients. The value of the database is enhanced by the use of standardized pathology review procedures and data collection procedures. The database and specimen tracking system provide an informatics link among the participating Dana-Farber/Harvard Cancer Center (DF/HCC) hospitals, including the Dana-Farber Cancer Institute and Brigham and Women?s Hospital (DFCI/BWH), the Beth Israel Deaconess Medical Center (BIDMC), Massachusetts General Hospital (MGH) and Children?s Hospital of Boston (CHB). This allows seamless sharing of specimen resources, linked to clinical outcome data, behind a secure data management system that is available to SPORE investigators at all participating institutions. The protection of patient confidentiality is guarded throughout the whole process, from specimen collection to use in research projects. The Biostatistics Core is and will continue to be responsible for assisting in the data analysis, data auditing and quality control. Finally, TAPCD Core has provided and will continue to provide SPORE investigators a variety of services critical to successful molecular analysis of human kidney tumors as well as xenograft models. These services include: histopathologic review and quality control analysis of all tumor samples utilized in experimental studies; macrodissection of frozen tissue samples and slide microdissection of paraffin-embedded or frozen tissues to ensure high neoplastic cellularity for samples utilized in experimental studies; laser capture microdissection (LCM) to provide ultra-pure tumor samples; performance of routine immunohistochemistry (IHC) and immunofluorescence (IF) stains on human kidney cancers (TMAs or whole tissue sections); optimization and validation of antibodies to known and novel proteins for use in IHC and IF; analysis of a broad range of IHC and IF stains using computer-assisted image analysis; development of novel RCC models.

Public Health Relevance

The TAPCD Core is essential to the success of all the five SPORE Research Projects as well as all future Career Development Awards (CDAs) and Development Research Projects (DRPs) via the provision of clinically annotated and highly characterized human kidney cancer specimens and the performance of sophisticated molecularly-based pathological assays on human tissue specimens and animal model tissues.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA101942-14
Application #
9554213
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Kuzmin, Igor A
Project Start
Project End
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
14
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
Scelo, Ghislaine; Muller, David C; Riboli, Elio et al. (2018) KIM-1 as a Blood-Based Marker for Early Detection of Kidney Cancer: A Prospective Nested Case-Control Study. Clin Cancer Res 24:5594-5601
Zhang, Jinfang; Bu, Xia; Wang, Haizhen et al. (2018) Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553:91-95
Gao, Xin; Jegede, Opeyemi; Gray, Connor et al. (2018) Comprehensive Genomic Profiling of Metastatic Tumors in a Phase 2 Biomarker Study of Everolimus in Advanced Renal Cell Carcinoma. Clin Genitourin Cancer 16:341-348
Liu, Wenjing; Chen, Binbin; Wang, Yang et al. (2018) RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proc Natl Acad Sci U S A 115:E1475-E1484
Iorgulescu, J Bryan; Braun, David; Oliveira, Giacomo et al. (2018) Acquired mechanisms of immune escape in cancer following immunotherapy. Genome Med 10:87
Gopal, Raj K; Kübler, Kirsten; Calvo, Sarah E et al. (2018) Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hürthle Cell Carcinoma. Cancer Cell 34:242-255.e5
Nakashima, Hiroshi; Alayo, Quazim A; Penaloza-MacMaster, Pablo et al. (2018) Modeling tumor immunity of mouse glioblastoma by exhausted CD8+ T cells. Sci Rep 8:208
Signoretti, Sabina; Flaifel, Abdallah; Chen, Ying-Bei et al. (2018) Renal Cell Carcinoma in the Era of Precision Medicine: From Molecular Pathology to Tissue-Based Biomarkers. J Clin Oncol :JCO2018792259
Hamieh, Lana; Choueiri, Toni K; Ogórek, Barbara et al. (2018) Mechanisms of acquired resistance to rapalogs in metastatic renal cell carcinoma. PLoS Genet 14:e1007679
Gao, Xin; McDermott, David F (2018) Ipilimumab in combination with nivolumab for the treatment of renal cell carcinoma. Expert Opin Biol Ther 18:947-957

Showing the most recent 10 out of 153 publications