The number of physician-scientists working in lung cancer has not kept pace with the overall growth of the medical research community or with the growth in our basic knowledge base, resulting in an increasing number of unrealized basic and translational research opportunities. Yale is uniquely suited to helping rebuild this base with our strong commitment to translational research. The Career Enhancement Program (CEP) of the Yale SPORE in Lung Cancer (YSILC) has been designed to contribute substantively to ongoing efforts and new initiatives attempting to address this problem. The goal of the CEP is to educate a new generation of investigators committed to translational research in lung cancer. The CEP has substantial institutional commitment, both in terms of funding and infrastructure. For example, our translational research office at Yale (also led by Dr. Herbst, YSILC PI) has been committed to providing early seed funding and translational support to young investigators early in their research careers. Potential CEP candidates include promising junior faculty who are interested in establishing their careers in translational lung cancer research and/or established investigators whose previous research has been in other areas and would like to transition into lung cancer focused research. Junior faculty awardees will be paired with mentors who are more established lung cancer investigators with a documented record of successful mentoring. In this way, the YSILC will stimulate the development of the next generation of physician scientists, addressing the most challenging issues in lung cancer research.

Public Health Relevance

PROGRAM NARRATIVE The Yale SPORE in Lung Cancer?s Career Enhancement Program is a key program to foster the development of the next generation of physician scientists focused on conducting research in the area of human thoracic malignancies to advance discoveries in the prevention, diagnosis, and treatment of lung cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA196530-06
Application #
9854327
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Altan, Mehmet; Kidwell, Kelley M; Pelekanou, Vasiliki et al. (2018) Association of B7-H4, PD-L1, and tumor infiltrating lymphocytes with outcomes in breast cancer. NPJ Breast Cancer 4:40
Kim, Tae Kon; Herbst, Roy S; Chen, Lieping (2018) Defining and Understanding Adaptive Resistance in Cancer Immunotherapy. Trends Immunol 39:624-631
Goldberg, Sarah B; Patel, Abhijit A (2018) Monitoring immunotherapy outcomes with circulating tumor DNA. Immunotherapy 10:1023-1025
Lopez Sambrooks, Cecilia; Baro, Marta; Quijano, Amanda et al. (2018) Oligosaccharyltransferase Inhibition Overcomes Therapeutic Resistance to EGFR Tyrosine Kinase Inhibitors. Cancer Res 78:5094-5106
Wilson, Frederick H; Politi, Katerina (2018) ERBB Signaling Interrupted: Targeting Ligand-Induced Pathway Activation. Cancer Discov 8:676-678
Wang, Guangchuan; Chow, Ryan D; Ye, Lupeng et al. (2018) Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR-mediated direct in vivo screening. Sci Adv 4:eaao5508
Villarroel-Espindola, Franz; Yu, Xiaoqing; Datar, Ila et al. (2018) Spatially Resolved and Quantitative Analysis of VISTA/PD-1H as a Novel Immunotherapy Target in Human Non-Small Cell Lung Cancer. Clin Cancer Res 24:1562-1573
Anastasiadou, Eleni; Jacob, Leni S; Slack, Frank J (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18:5-18
Bisserier, Malik; Wajapeyee, Narendra (2018) Mechanisms of resistance to EZH2 inhibitors in diffuse large B-cell lymphomas. Blood 131:2125-2137
Chow, Ryan D; Chen, Sidi (2018) Cancer CRISPR Screens In Vivo. Trends Cancer 4:349-358

Showing the most recent 10 out of 74 publications