The primary functions of the Human Subjects Core are as follows. (1) Recruitment of human subjects from majority and minority populations for participation in the longitudinal study of age-related hearing loss and in experiments proposed in each project. (2) Collection, storage, and analysis of demographic, audiologic, and biologic/medical data and tissue (blood and DMA) from human subjects enrolling in and continuing in the longitudinal study. These data define the basic demographic, audiologic, and medical profiles of each subject and are organized into searchable databases, which provide key information needed by investigators in each project to select subjects according to the needs of their experiments. (3) Coordination of subject schedules for the audiologic and medical test battery, annual evaluations, longitudinal measures, and visits to the Otolaryngology clinic and to the General Clinical Research Center (GCRC). Because of the strong links among projects, there is substantial overlap of needs for subject participation across projects. Thus, a major function of the Human Subjects Core is to make efficient use of subjects' testing time.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Specialized Center (P50)
Project #
5P50DC000422-25
Application #
8378531
Study Section
Special Emphasis Panel (ZDC1-SRB-S)
Project Start
Project End
2013-12-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
25
Fiscal Year
2012
Total Cost
$621,172
Indirect Cost
$200,037
Name
Medical University of South Carolina
Department
Type
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Lewis, Morag A; Nolan, Lisa S; Cadge, Barbara A et al. (2018) Whole exome sequencing in adult-onset hearing loss reveals a high load of predicted pathogenic variants in known deafness-associated genes and identifies new candidate genes. BMC Med Genomics 11:77
Bologna, William J; Vaden Jr, Kenneth I; Ahlstrom, Jayne B et al. (2018) Age effects on perceptual organization of speech: Contributions of glimpsing, phonemic restoration, and speech segregation. J Acoust Soc Am 144:267
Panganiban, Clarisse H; Barth, Jeremy L; Darbelli, Lama et al. (2018) Noise-induced dysregulation of Quaking RNA binding proteins contributes to auditory nerve demyelination and hearing loss. J Neurosci :
Chiarello, Christine; Vaden Jr, Kenneth I; Eckert, Mark A (2018) Orthographic influence on spoken word identification: Behavioral and fMRI evidence. Neuropsychologia 111:103-111
Harris, Kelly C; Vaden Jr, Kenneth I; McClaskey, Carolyn M et al. (2018) Complementary metrics of human auditory nerve function derived from compound action potentials. J Neurophysiol 119:1019-1028
McRackan, Theodore R; Fabie, Joshua E; Burton, Jane A et al. (2018) Earphone and Aided Word Recognition Differences in Cochlear Implant Candidates. Otol Neurotol 39:e543-e549
Dubno, Judy R (2018) Beyond the audiogram: application of models of auditory fitness for duty to assess communication in the real world. Int J Audiol 57:321-322
McRackan, Theodore R; Clinkscales, William B; Ahlstrom, Jayne B et al. (2018) Factors associated with benefit of active middle ear implants compared to conventional hearing aids. Laryngoscope 128:2133-2138
Dias, James W; McClaskey, Carolyn M; Harris, Kelly C (2018) Time-Compressed Speech Identification Is Predicted by Auditory Neural Processing, Perceptuomotor Speed, and Executive Functioning in Younger and Older Listeners. J Assoc Res Otolaryngol :
Worley, Mitchell L; Schlosser, Rodney J; Soler, Zachary M et al. (2018) Age-related differences in olfactory cleft volume in adults: A computational volumetric study. Laryngoscope :

Showing the most recent 10 out of 135 publications