Multiple organ failure (MOF) remains a significant clinical problem and is the most common cause of post-injury death in intensive care units. While epidemiological studies have classified various risk factors for the development of MOF, the pathogenesis of this syndrome is uncertain. Several factors have served to hinder progress towards understanding MOF, including 1) lack of a unified definition of MOF; 2) inadequate epidemiological characterization of the disease process; and 3) inclusion of a heterogeneous patient populations. Thus, towards development of a MOF database, this core seeks continuation of prospective identification and following of patients at high risk for developing MOF using a single definition of the disease process developed at the University of Colorado Health Sciences Center and the Denver Health Medical Center (DHMC). This study population will be drawl from the level I trauma center at the DHMC, and offers the advantage of uniformity of patient care and laboratory determination protocols that could potentially influence patient outcome.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM049222-08
Application #
6340981
Study Section
Project Start
2000-04-01
Project End
2001-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
8
Fiscal Year
2000
Total Cost
$210,690
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
065391526
City
Aurora
State
CO
Country
United States
Zip Code
80045
Stettler, Gregory R; Sumislawski, Joshua J; Moore, Ernest E et al. (2018) Citrated kaolin thrombelastography (TEG) thresholds for goal-directed therapy in injured patients receiving massive transfusion. J Trauma Acute Care Surg 85:734-740
Coleman, Julia R; Moore, Ernest E; Chapman, Michael P et al. (2018) Rapid TEG efficiently guides hemostatic resuscitation in trauma patients. Surgery 164:489-493
Banerjee, Anirban; Silliman, Christopher C; Moore, Ernest E et al. (2018) Systemic hyperfibrinolysis after trauma: a pilot study of targeted proteomic analysis of superposed mechanisms in patient plasma. J Trauma Acute Care Surg 84:929-938
Moore, Ernest E; Moore, Hunter B; Chapman, Michael P et al. (2018) Goal-directed hemostatic resuscitation for trauma induced coagulopathy: Maintaining homeostasis. J Trauma Acute Care Surg 84:S35-S40
Reisz, Julie A; Wither, Matthew J; Moore, Ernest E et al. (2018) All animals are equal but some animals are more equal than others: Plasma lactate and succinate in hemorrhagic shock-A comparison in rodents, swine, nonhuman primates, and injured patients. J Trauma Acute Care Surg 84:537-541
Stettler, Gregory R; Moore, Ernest E; Nunns, Geoffrey R et al. (2018) Rotational thromboelastometry thresholds for patients at risk for massive transfusion. J Surg Res 228:154-159
Nunns, Geoffrey R; Stringham, John R; Gamboni, Fabia et al. (2018) Trauma and hemorrhagic shock activate molecular association of 5-lipoxygenase and 5-lipoxygenase-Activating protein in lung tissue. J Surg Res 229:262-270
Moore, Hunter B; Moore, Ernest E; Chapman, Michael P et al. (2018) Plasma-first resuscitation to treat haemorrhagic shock during emergency ground transportation in an urban area: a randomised trial. Lancet 392:283-291
Kuldanek, Susan; Silliman, Christopher C (2018) Mortality after red blood cell transfusions from previously pregnant donors: complexities in the interpretation of large data. J Thorac Dis 10:648-652
Nunns, Geoffrey R; Moore, Ernest E; Stettler, Gregory R et al. (2018) Empiric transfusion strategies during life-threatening hemorrhage. Surgery 164:306-311

Showing the most recent 10 out of 291 publications