Systems biology seeks to understand relationships between the design of biological systems and the complex tasks they have been molded, by natural selection, to perform. In biological systems, events happen not only in time, but also in the realm of space: Cells and organisms recognize spatial information (e.g. chemotactic gradients, visual patterns), generate spatial information (body patterns, tissue architectures), and may even use spatial information as a computational tool. The focus of the proposed center is on how spatial information is handled by biological systems, and how it ultimately is used to create biological form (morphogenesis). The center will support a program of interdisciplinary research, technology development, training, and outreach aimed at furthering the development of the spatial side of systems biology. The research projects are organized into three themes, focusing on pattern formation during development, the control of proliferative dynamics in epithelia, and spatial aspects of the regulation of intracellular signaling. Projects within these themes will take advantage of a variety of approaches (genetics, biochemistry, biophysics, mathematical modeling, computation) and experimental organisms (yeast, flies, zebrafish, frogs, and mice). Technology development will focus on mathematical/computational tools and optical biology tools that address some of the unique challenges associated with measuring and modeling spatially dynamic systems. Training will include programs at the undergraduate, graduate and postgraduate levels for educating the next generation of systems biologists. The goals of the program will be met through the collaborative efforts of twenty faculty at U.C. Irvine, representing a mix of biologists, mathematicians, physicists, engineers and computer scientists. Among other things, the efforts of the center are expected to identify common principles in how different kinds of biological systems manage the spatial world. Such insights will have a broad impact on a variety of health-related areas including human development and birth defects, stem cells and regeneration, normal and tumor cell growth, and basic physiology.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-CBCB-2 (SB))
Program Officer
Lyster, Peter
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
Anatomy/Cell Biology
Schools of Arts and Sciences
United States
Zip Code
Mahlbacher, Grace; Curtis, Louis T; Lowengrub, John et al. (2018) Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment. J Immunother Cancer 6:10
McLelland, Bryce T; Lin, Bin; Mathur, Anuradha et al. (2018) Transplanted hESC-Derived Retina Organoid Sheets Differentiate, Integrate, and Improve Visual Function in Retinal Degenerate Rats. Invest Ophthalmol Vis Sci 59:2586-2603
Davey, Rhonda J; Digman, Michelle A; Gratton, Enrico et al. (2018) Quantitative image mean squared displacement (iMSD) analysis of the dynamics of profilin 1 at the membrane of live cells. Methods 140-141:119-125
Rackauckas, Christopher; Schilling, Thomas; Nie, Qing (2018) Mean-Independent Noise Control of Cell Fates via Intermediate States. iScience 3:11-20
Malacrida, Leonel; Gratton, Enrico (2018) LAURDAN fluorescence and phasor plots reveal the effects of a H2O2 bolus in NIH-3T3 fibroblast membranes dynamics and hydration. Free Radic Biol Med 128:144-156
Malacrida, Leonel; Rao, Estella; Gratton, Enrico (2018) Comparison between iMSD and 2D-pCF analysis for molecular motion studies on in vivo cells: The case of the epidermal growth factor receptor. Methods 140-141:74-84
Hedde, Per Niklas; Gratton, Enrico (2018) Selective plane illumination microscopy with a light sheet of uniform thickness formed by an electrically tunable lens. Microsc Res Tech 81:924-928
Kobylkevich, Brian M; Sarkar, Anyesha; Carlberg, Brady R et al. (2018) Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity. Phys Biol 15:036005
Sameni, Sara; Malacrida, Leonel; Tan, Zhiqun et al. (2018) Alteration in Fluidity of Cell Plasma Membrane in Huntington Disease Revealed by Spectral Phasor Analysis. Sci Rep 8:734
Konstorum, Anna; Lowengrub, John S (2018) Activation of the HGF/c-Met axis in the tumor microenvironment: A multispecies model. J Theor Biol 439:86-99

Showing the most recent 10 out of 404 publications