PROJECT 3: CELL-CELL COMMUNICATION AND HETEROGENEITY SUMMARY Understanding tissue-level organization of biological systems is particularly challenging as tissues are comprised of a heterogeneous collection of cells and the cells within the tissue communicate with each other to coordinate their activities. Approaches that have been successful in other disciplines, such as statistical mechanics, fail to capture the emergent properties of biological tissues. Therefore, there is a need to develop new frameworks to enable deeper understanding the organization of biological tissues. We propose to use the maps-to-models paradigm to study two models of biological tissue organization: (1) antibiotic resistance of a biofilm of Bacillus subtilis; and (2) induction of viral protection through type I interferon response in lung epithelial cells during influenza infection. The implementation of the maps-to- models paradigm will be done through the completion of the following three aims. First, data on spatiotemporal cellular states within tissue will be acquired to construct of maps of the dynamic tissue organization. The maps-to-models paradigm is based on the use of systems-wide datasets as a constraint when building mathematical models. In this aim we will use custom-made microfluidic devices to collect data at single-cell resolution on cellular states within a tissue. Using fluorescent reporters, we will monitor the movement, replication, death, cell state and quorum sensing communications in the biofilm. Similar techniques will be done within an epithelial monolayer during influenza infection to track infection, cellular antiviral response and responses to interferon signals. Next, we will construct a detailed model of the spatiotemporal dynamics within both tissues. By tracking individual cells over time, we will determine the number and pattern of cellular states. We will construct the interaction networks between cells based on a reaction-diffusion framework to assign weights on the relative influence of cells on each other as a function of their distance. The mathematical frameworks that will be used for both systems are very similar. Finally, the models generated above will be used to make specific predictions about the emergent properties of biological tissues. For the biofilm model, predictions will be made about the spatiotemporal dynamics of antibiotic resistance. For the viral infection model, predictions will be made about the specific number of macrophages needed to prevent the spread of viruses. Both predictions are quantitative and therefore will be tested through direct comparison of prediction with experimental results in the two systems. The utilization of two model systems in the above aims will demonstrate the validity and predictive power of the overall maps-to-models approach and will suggest that this paradigm could be successfully applied to gain better quantitative predictive understanding of biological tissue-level organization.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
2P50GM085764-06
Application #
8957393
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2015-09-01
Budget End
2016-05-31
Support Year
6
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Hoeksema, Marten A; Glass, Christopher K (2018) Nature and nurture of tissue-specific macrophage phenotypes. Atherosclerosis :
Preissl, Sebastian; Fang, Rongxin; Huang, Hui et al. (2018) Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. Nat Neurosci 21:432-439
Cowell, Annie N; Valdivia, Hugo O; Bishop, Danett K et al. (2018) Exploration of Plasmodium vivax transmission dynamics and recurrent infections in the Peruvian Amazon using whole genome sequencing. Genome Med 10:52
Link, Verena M; Duttke, Sascha H; Chun, Hyun B et al. (2018) Analysis of Genetically Diverse Macrophages Reveals Local and Domain-wide Mechanisms that Control Transcription Factor Binding and Function. Cell 173:1796-1809.e17
Zhang, Wei; Ma, Jianzhu; Ideker, Trey (2018) Classifying tumors by supervised network propagation. Bioinformatics 34:i484-i493
Xiong, Liyang; Cooper, Robert; Tsimring, Lev S (2018) Coexistence and Pattern Formation in Bacterial Mixtures with Contact-Dependent Killing. Biophys J 114:1741-1750
Cooper, Robert; Tsimring, Lev; Hasty, Jeff (2018) Microfluidics-Based Analysis of Contact-dependent Bacterial Interactions. Bio Protoc 8:
Martinez-Corral, Rosa; Liu, Jintao; Süel, Gürol M et al. (2018) Bistable emergence of oscillations in growing Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 115:E8333-E8340
Zhang, Wei; Bojorquez-Gomez, Ana; Velez, Daniel Ortiz et al. (2018) A global transcriptional network connecting noncoding mutations to changes in tumor gene expression. Nat Genet 50:613-620
Dai, Xiongfeng; Zhu, Manlu; Warren, Mya et al. (2018) Slowdown of Translational Elongation in Escherichia coli under Hyperosmotic Stress. MBio 9:

Showing the most recent 10 out of 207 publications