CORE 2. directed by the MR physicist and Associate Director of the Caltech Brain Imaging Center, Dr Michael Tyszka, and co-directed by Ralph Adolphs, will provide the most substantial resources required for the four Projects in this Conte Center. It encompasses three MRI systems for structural and functional imaging of the brain in monkeys and in humans, detailed in the Resources section. It will provide all capabilities for structural, functional, and diffusion magnetic resonance imaging proposed in this Conte Center Application. There are three Aims: providing MR imaging including physical resources, assistance, and billing; providing image quality assurance (QA); providing customized software and hardware development.
Aim 1 is to enable the structural and functional MRI needs of Projects 1-3, and the structural, functional and diffusion MRI needs of Project 4. It includes providing infrastructure, reserving scanners, support staff, and billing, as part of the ongoing duties of the Caltech Brain Imaging Center.
Aim 2 is to assure data quality for the imaging.
This Aim will integrate routine, detailed quality assurance data acquired on all three scanners using an automated centralized reporting system monitoring quality factors ranging from raw SNR to spiking artifact detection.
And Aim 3 is development. State-of-the-art neuroimaging requires continual development beyond available commercial products. This includes pulse sequence programming, image reconstruction programming and coil building, as well as general development of optimized imaging protocols and interfacing with peripherals like eyetrackers and psychophysiology in the scanner. We are aided here substantially by the two consultants on this Core, Drs. Wald and Merkle.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZMH1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
California Institute of Technology
United States
Zip Code
Yao, Shuxia; Qi, Song; Kendrick, Keith M et al. (2018) Attentional set to safety recruits the ventral medial prefrontal cortex. Sci Rep 8:15395
Schneider, Brett; Heskje, Jonah; Bruss, Joel et al. (2018) The left temporal pole is a convergence region mediating the relation between names and semantic knowledge for unique entities: Further evidence from a ""recognition-from-name"" study in neurological patients. Cortex 109:14-24
Folkerts, Sarah; Rutishauser, Ueli; Howard, Marc W (2018) Human Episodic Memory Retrieval Is Accompanied by a Neural Contiguity Effect. J Neurosci 38:4200-4211
Cameron, C Daryl; Reber, Justin; Spring, Victoria L et al. (2018) Damage to the ventromedial prefrontal cortex is associated with impairments in both spontaneous and deliberative moral judgments. Neuropsychologia 111:261-268
Mobbs, Dean; Trimmer, Pete C; Blumstein, Daniel T et al. (2018) Foraging for foundations in decision neuroscience: insights from ethology. Nat Rev Neurosci :
Feng, Chunliang; Cao, Jianqin; Li, Yingli et al. (2018) The pursuit of social acceptance: aberrant conformity in social anxiety disorder. Soc Cogn Affect Neurosci 13:809-817
Qi, Song; Hassabis, Demis; Sun, Jiayin et al. (2018) How cognitive and reactive fear circuits optimize escape decisions in humans. Proc Natl Acad Sci U S A 115:3186-3191
Chib, Vikram S; Adachi, Ryo; O'Doherty, John P (2018) Neural substrates of social facilitation effects on incentive-based performance. Soc Cogn Affect Neurosci :
Barrash, Joseph; Stuss, Donald T; Aksan, Nazan et al. (2018) ""Frontal lobe syndrome""? Subtypes of acquired personality disturbances in patients with focal brain damage. Cortex 106:65-80
Beadle, Janelle N; Paradiso, Sergio; Tranel, Daniel (2018) Ventromedial Prefrontal Cortex Is Critical for Helping Others Who Are Suffering. Front Neurol 9:288

Showing the most recent 10 out of 158 publications