This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The PI has a strong interest in the molecular and neural mechanisms underlying behavior and uses a wide range of experimental techniques, from behavioral and pharmacological to molecular and transgenic techniques, to address important behavioral neuroscience questions. Currently, research focuses on the role of neuropeptides in the modulation of social behaviors and attachment. Vasopressin (AVP) facilitates affiliation and pair bond formation in monogamous species. Compared to non-monogamous species, monogamous species have high levels of AVP receptors in the ventral pallidum, a brain region associated with reinforcement and reward. Enhancing AVP receptor gene expression in the ventral pallidum using viral vector gene transfer facilitates pair bonding in the male prairie vole. This has led to the hypothesis that vasopressin stimulates social attachment by activating reward circuits via activation of AVP receptors in the ventral pallidum.
The specific aims of this project will investigate the role of the ventral pallidum in social attachment and characterize the activity, phenotype, and connectivity of vasopressin receptor containing cells in this region. Further studies will investigate the molecular mechanisms controlling AVP receptor expression in the ventral pallidum. Understanding the link between social interactions, reward circuitry and social attachment may provide useful insights into potential mechanisms underlying psychiatric diseases characterized by social deficits, such as autism.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
2P51RR000165-46
Application #
7349190
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2006-06-09
Project End
2007-04-30
Budget Start
2006-06-09
Budget End
2007-04-30
Support Year
46
Fiscal Year
2006
Total Cost
$20,012
Indirect Cost
Name
Emory University
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Tedesco, Dana; Grakoui, Arash (2018) Environmental peer pressure: CD4+ T cell help in tolerance and transplantation. Liver Transpl 24:89-97
Mavigner, Maud; Habib, Jakob; Deleage, Claire et al. (2018) Simian Immunodeficiency Virus Persistence in Cellular and Anatomic Reservoirs in Antiretroviral Therapy-Suppressed Infant Rhesus Macaques. J Virol 92:
Walker, Lary C (2018) Prion-like mechanisms in Alzheimer disease. Handb Clin Neurol 153:303-319
Kamberov, Yana G; Guhan, Samantha M; DeMarchis, Alessandra et al. (2018) Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125:99-105
Wakeford, Alison G P; Morin, Elyse L; Bramlett, Sara N et al. (2018) A review of nonhuman primate models of early life stress and adolescent drug abuse. Neurobiol Stress 9:188-198
Singh, Arun; Jenkins, Meagan A; Burke Jr, Kenneth J et al. (2018) Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates. Cell Rep 22:941-952
Maddox, S A; Kilaru, V; Shin, J et al. (2018) Estrogen-dependent association of HDAC4 with fear in female mice and women with PTSD. Mol Psychiatry 23:658-665
Li, Chun-Xia; Kempf, Doty J; Tong, Frank C et al. (2018) Longitudinal MRI Evaluation of Ischemic Stroke in the Basal Ganglia of a Rhesus Macaque (Macaca mulatta) with Seizures. Comp Med :
Lacreuse, Agnès; Parr, Lisa; Chennareddi, Lakshmi et al. (2018) Age-related decline in cognitive flexibility in female chimpanzees. Neurobiol Aging 72:83-88
Meng, Yuguang; Hu, Xiaoping; Zhang, Xiaodong et al. (2018) Diffusion tensor imaging reveals microstructural alterations in corpus callosum and associated transcallosal fiber tracts in adult macaques with neonatal hippocampal lesions. Hippocampus 28:838-845

Showing the most recent 10 out of 912 publications