Osteoarthritis is believed to be induced by repetitive microtrauma to joint cartilage, especially in weight-bearing joints like the knee. This microtrauma can occur both as a result of shear motion between cartilaginous joint surfaces, and/or in compressive loading. While anterior posterior loading of the knee has been studied extensively, there has been less attention paid to knee varus-valgus and axial rotational loading, and to the compensatory role of muscle contractions in promoting knee stability in the varus-valgus plane. Joint stability has been classically attributed to five major factors: bone/cartilaginous contact forces, ligament and capsule stiffness, intrinsic stiffness of active muscles, and reflexively mediated muscle stiffness. Reflex action may, in turn, be mediated either by muscle stretch receptors, by periarticular tissue afferents (ligaments and capsule) and potentially even by skin mechanoreceptors. This latter class of reflexes potentially protects the joint through muscle activation in situations of abnormal valgus loading at the joint. In this setting, an injury of the collateral ligaments will deprive reduce reflex based protection through the disruption of afferents derived from receptors located in these ligaments. Clinically, some injuries to the medial collateral ligaments (MCL) result in complete disruption of the ligament fibers with significant joint instability. The development of posttraumatic osteoarthritis at the knee joint, which may follow long after MCL injury, is believed to be induced by the injury based-instability. There has been less attention paid to the """"""""nonstructural"""""""" effect of these injuries on the ligament, and the interaction of the neurosensory function of the ligament in promoting joint stability. Accordingly, we hypothesize that posttraumatic osteoarthritis associated with MCL injury is attributable, at least in part, to the disruption of afferent pathways originating in ligament receptors. It follows that targeted muscle contractions cannot be elicited by the application of a mechanical valgus stimulus to the MCL injured human knee. We further hypothesize that the application of comparable mechanical stimuli to the contra lateral normal knee elicits reflex responses. which significantly increase the joints stiffness in the valgus direction. These hypotheses will be examined on subjects with complete MCL injuries on one side and a normal knee on the other side. The affected and unaffected knees will be tested at full extension and with different levels of joint muscle preactivation (in hamstrings and quadriceps). Our findings will shed light on fundamental mechanisms of joint stability, and on adverse effects of loss of stability in the MCL injured knee.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Comprehensive Center (P60)
Project #
Application #
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
United States
Zip Code
Poornima, I G; Shields, K; Kuller, L H et al. (2018) Associations of osteoprotegerin with coronary artery calcification among women with systemic lupus erythematosus and healthy controls. Lupus :961203317751060
Demirci, F Yesim; Wang, Xingbin; Morris, David L et al. (2017) Multiple signals at the extended 8p23 locus are associated with susceptibility to systemic lupus erythematosus. J Med Genet 54:381-389
Demirci, F Yesim; Wang, Xingbin; Kelly, Jennifer A et al. (2016) Identification of a New Susceptibility Locus for Systemic Lupus Erythematosus on Chromosome 12 in Individuals of European Ancestry. Arthritis Rheumatol 68:174-83
Zhao, Jian; Giles, Brendan M; Taylor, Rhonda L et al. (2016) Preferential association of a functional variant in complement receptor 2 with antibodies to double-stranded DNA. Ann Rheum Dis 75:242-52
Kottyan, Leah C; Zoller, Erin E; Bene, Jessica et al. (2015) The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Hum Mol Genet 24:582-96
Parker, Ben; Urowitz, Murray B; Gladman, Dafna D et al. (2015) Impact of early disease factors on metabolic syndrome in systemic lupus erythematosus: data from an international inception cohort. Ann Rheum Dis 74:1530-6
Martins, M; Williams, A H; Comeau, M et al. (2015) Genetic association of CD247 (CD3?) with SLE in a large-scale multiethnic study. Genes Immun 16:142-50
Bernatsky, Sasha; Ramsey-Goldman, Rosalind; Joseph, Lawrence et al. (2014) Lymphoma risk in systemic lupus: effects of disease activity versus treatment. Ann Rheum Dis 73:138-42
Lertratanakul, Apinya; Wu, Peggy; Dyer, Alan R et al. (2014) Risk factors in the progression of subclinical atherosclerosis in women with systemic lupus erythematosus. Arthritis Care Res (Hoboken) 66:1177-85
Kaiser, Rachel; Tang, Ling Fung; Taylor, Kimberly E et al. (2014) A polymorphism in TLR2 is associated with arterial thrombosis in a multiethnic population of patients with systemic lupus erythematosus. Arthritis Rheumatol 66:1882-7

Showing the most recent 10 out of 248 publications