The overall objective of this proposal is to determine the role of stress granules (SGs) and processing bodies (PBs) in reprogramming mRNA metabolism during stress. SGs are cytoplasmic foci at which translationally stalled pre-initiation complexes accumulate in stressed cells. We have discovered that SGs are in physical proximity to PBs, distinct cytoplasmic foci at which decapping enzymes, exonucleases and partially degraded mRNAs are concentrated in both stressed and unstressed cells. Moreover, components of the RNA-induced silencing complex (RISC) are concentrated at both SGs and PBs, suggesting that microRNA may be involved in stress-induced reprogramming of mRNA metabolism. We hypothesize that mRNA released from disassembled polysomes is sorted and remodeled at SGs, allowing the delivery of selected transcripts to PBs for degradation. The ability of the mRNA destabilizing factor TTP to cause SGs and PBs to fuse into a common structure supports this hypothesis and suggests that TTP serves as a molecular link between SGs and PBs.
The specific aims are: i) To determine whether mRNA and protein move between SGs and PBs, ii) To determine the contribution of SGs, PBs and TTP to stress-induced reprogramming of mRNA metabolism, iii) To determine the role of RISC in stress-induced reprogramming of mRNA metabolism, and iv) To determine the role of mTOR and S6 kinases in SG/PB assembly and stress-induced reprogramming of mRNA metabolism.
These aims will be accomplished by using fluorescence recovery after photobleaching analysis to quantify movement of mRNA and proteins in and out of SGs and PBs. We will compare the ability of mutant and wild type TTP to regulate both SG:PB interactions and mRNA metabolism. We will use reporter transcripts that are regulated by microRNA to determine whether the RISC regulates mRNA metabolism during stress. Finally, we will determine whether a mTOR/S6 kinase cascade that regulates the assembly of SGs is also involved in the regulation of mRNA metabolism during stress. These studies have implications for our understanding of stress-regulated pathological conditions, including Alzheimer's disease, diabetes and cancer.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Molecular Genetics C Study Section (MGC)
Program Officer
Gondre-Lewis, Timothy A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Fay, Marta M; Anderson, Paul J (2018) The Role of RNA in Biological Phase Separations. J Mol Biol 430:4685-4701
Fay, Marta M; Anderson, Paul J; Ivanov, Pavel (2017) ALS/FTD-Associated C9ORF72 Repeat RNA Promotes Phase Transitions In Vitro and in Cells. Cell Rep 21:3573-3584
Lastres-Becker, Isabel; Nonis, David; Eich, Florian et al. (2016) Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. Biochim Biophys Acta 1862:1558-69
Stoecklin, Georg; Kedersha, Nancy (2013) Relationship of GW/P-bodies with stress granules. Adv Exp Med Biol 768:197-211
Fujimura, Ken; Sasaki, Atsuo T; Anderson, Paul (2012) Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Res 40:8099-110
Emara, Mohamed M; Fujimura, Ken; Sciaranghella, Daniele et al. (2012) Hydrogen peroxide induces stress granule formation independent of eIF2ýý phosphorylation. Biochem Biophys Res Commun 423:763-9
Ivanov, Pavel; Emara, Mohamed M; Villen, Judit et al. (2011) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43:613-23
Simpson-Holley, M; Kedersha, N; Dower, K et al. (2011) Formation of antiviral cytoplasmic granules during orthopoxvirus infection. J Virol 85:1581-93
Emara, Mohamed M; Ivanov, Pavel; Hickman, Tyler et al. (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285:10959-68
Li, Chi Ho; Ohn, Takbum; Ivanov, Pavel et al. (2010) eIF5A promotes translation elongation, polysome disassembly and stress granule assembly. PLoS One 5:e9942

Showing the most recent 10 out of 14 publications