Enterococci are leading causes of nosocomial infections, which affect approximately 2.5 million patients in the US each year. Nosocomial infections in general, and enterococcal infections in particular, are frequently refractory to antibiotic treatment because of multiple antibiotic resistances. Few studies have examined the pathogenesis of enterococcal infection. One of the factors that has been thoroughly documented to contribute to the virulence of Enterococcus faecalis is the cytolysin. The cytolysin is a structurally novel toxin that consists of two dissimilar, small subunits. Each subunit is extensively post-translationally modified and proteolytically processed during maturation. Mature subunits interact with target cell membranes to effect lysis of eukaryotic cells, and killing of bacterial cells of gram-positive species. We recently described a novel, two-component regulatory system that governs expression of the E. faecalis cytolysin. The two regulatory components function by an unknown mechanism to shut off transcription of the cytolysin operon. Interestingly, the operon is induced by the smaller of the two toxin subunits, but only in its mature and fully processed form. Thus, the small toxin subunit must be translated, post-translationally modified, secreted, and processed through two proteolytic trimming steps before it can feed back onto the system and induce high level expression of the cytolysin operon. As the cytolysin contributes to the toxicity of enterococcal infection, it is of interest to decipher the molecular mechanisms involved in toxin regulation, and in toxin activity, toward the goal of developing a therapeutic that renders cytolytic enterococcal infections less destructive.
The aims of this proposal therefore are to determine the molecular mechanism by which the two components CylR1 and CylR2 regulate expression of the cytolysin operon; and to determine how the structures of the toxin subunits CylLL and CylLS, including post-translational modifications, relate to cytolytic bactericidal and cytolysin operon inducing function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
2R01AI041108-06
Application #
6574809
Study Section
Bacteriology and Mycology Subcommittee 2 (BM)
Program Officer
Perdue, Samuel S
Project Start
1997-12-01
Project End
2007-11-30
Budget Start
2002-12-15
Budget End
2003-11-30
Support Year
6
Fiscal Year
2003
Total Cost
$265,531
Indirect Cost
Name
University of Oklahoma Health Sciences Center
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
McBride, Shonna M; Coburn, Phillip S; Baghdayan, Arto S et al. (2009) Genetic variation and evolution of the pathogenicity island of Enterococcus faecalis. J Bacteriol 191:3392-402
Cox, Christopher R; Gilmore, Michael S (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 75:1565-76
Spoering, Amy L; Gilmore, Michael S (2006) Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 9:133-7
Cox, Christopher R; Coburn, Phillip S; Gilmore, Michael S (2005) Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr Protein Pept Sci 6:77-84
Engelbert, Michael; Gilmore, Michael S (2005) Fas ligand but not complement is critical for control of experimental Staphylococcus aureus Endophthalmitis. Invest Ophthalmol Vis Sci 46:2479-86
Pillar, Christopher M; Gilmore, Michael S (2004) Enterococcal virulence--pathogenicity island of E. Faecalis. Front Biosci 9:2335-46
Rumpel, Sigrun; Razeto, Adelia; Pillar, Chris M et al. (2004) Structure and DNA-binding properties of the cytolysin regulator CylR2 from Enterococcus faecalis. EMBO J 23:3632-42
Coburn, Phillip S; Pillar, Christopher M; Jett, Bradley D et al. (2004) Enterococcus faecalis senses target cells and in response expresses cytolysin. Science 306:2270-2
Engelbert, Michael; Mylonakis, Eleftherios; Ausubel, Frederick M et al. (2004) Contribution of gelatinase, serine protease, and fsr to the pathogenesis of Enterococcus faecalis endophthalmitis. Infect Immun 72:3628-33
Shankar, Nathan; Coburn, Phillip; Pillar, Chris et al. (2004) Enterococcal cytolysin: activities and association with other virulence traits in a pathogenicity island. Int J Med Microbiol 293:609-18

Showing the most recent 10 out of 19 publications