Assembly of major histocompatibility complex (MHC) class I molecules occurs within the endoplasmic reticulum (ER) of cells. Newly synthesized MHC class I molecules are recruited into interactions with the transporter associated with antigen processing (TAP), tapasin, ERp57, protein disulfide isomerase, calnexin and calreticulin. This complex of accessory proteins can be considered a molecular machine whose job it is to (i) pump the peptide products of protein degradation into the region of MHC class I assembly (ii) recruit unassembled MHC class I (iii) facilitate MHC class I-peptide assembly and (iv) ensure regulated release of optimally loaded MHC class I. Much remains to be understood about the workings of this intricate molecular machine, which has been the focus of our research for the past eleven years. Based on our previous work with the TAP transporter, we are able to propose a detailed model for how ATP binding and hydrolysis couple to peptide binding and transport. In the proposed studies we will examine effects of TAP substrates on nucleotide binding and exchange by TAP, and on interactions between the nucleotide binding domains (NBD). A model for the peptide-binding site of TAP will also be examined. These investigations will allow for better understanding of how TAP can be manipulated to enhance or suppress immune responses, and will also allow for better predictions of immunodominant cytotoxic T lymphocyte (CTL) epitopes. Based on analyses of the assembly characteristics of various MHC class I allotypes in tapasin-deficient cells, it is our hypothesis that tapasin is essential for peptide loading of MHC class I allotypes that have slow intrinsic peptide loading kinetics. Peptide binding properties of tapasin dependent and independent MHC class I allotypes will be compared under different conditions. Our data suggest that tapasin is responsible for recruiting calreticulin and ERp57 into the peptide loading complex. Furthermore different conformational states of tapasin-ERp57 complexes had different activities in enhancing peptide loading of MHC class I molecules. We seek to better understand the nature of the differences. We also seek to understand the role of careticulin in tapasin-assisted MHC class I assembly. Although all MHC class I molecules appear to follow the same assembly route within the ER, closely related HLA-B allotypes differ dramatically in their intrinsic rates of assembly and ER exit. In the studies proposed here, we seek to classify high frequency HLA-B alleles as rapid or slow trafficking, and to also examine the functional consequences of rapid or slow trafficking upon antigen presentation and disease progression. It is our hypothesis that the trafficking phenotypes can impact both the CTL response and the NK cell response, which will be further examined. Together, these studies will allow for a better understanding of the different steps of the MHC class I assembly route, and will contribute to the development of more effective strategies to enhance CTL responses in infection and cancer.

Public Health Relevance

An understanding of the substrate interaction site of TAP, and of potential resting state conformations of TAP (inactive conformations) will be important for future designs of TAP inhibitors that could be of use in settings of transplantation and autoimmunity, and additionally in the design of inhibitors of other ABC transporters to overcome drug/antibiotic resistance. A better understanding of the mechanism of tapasin function could lead to new strategies for enhancing assembly of specific immunogenic peptides with MHC Class I molecules in infection and cancer. Finally, an understanding of how trafficking differences between HLA-B allotypes impact their antigen presenting ability will be important for better elucidating the effects of different HLA antigens on disease susceptibility, resolution, and progression.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI044115-12
Application #
8006401
Study Section
Cellular and Molecular Immunology - B Study Section (CMIB)
Program Officer
Gondre-Lewis, Timothy A
Project Start
1999-01-15
Project End
2013-12-31
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
12
Fiscal Year
2011
Total Cost
$378,476
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Geng, Jie; Zaitouna, Anita J; Raghavan, Malini (2018) Selected HLA-B allotypes are resistant to inhibition or deficiency of the transporter associated with antigen processing (TAP). PLoS Pathog 14:e1007171
Yarzabek, Brogan; Zaitouna, Anita J; Olson, Eli et al. (2018) Variations in HLA-B cell surface expression, half-life and extracellular antigen receptivity. Elife 7:
Geng, Jie; Altman, John D; Krishnakumar, Sujatha et al. (2018) Empty conformers of HLA-B preferentially bind CD8 and regulate CD8+ T cell function. Elife 7:
Wijeyesakere, Sanjeeva Joseph; Bedi, Sukhmani Kaur; Huynh, David et al. (2016) The C-Terminal Acidic Region of Calreticulin Mediates Phosphatidylserine Binding and Apoptotic Cell Phagocytosis. J Immunol 196:3896-3909
Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K; Arora, Karunesh et al. (2015) Regulation of calreticulin-major histocompatibility complex (MHC) class I interactions by ATP. Proc Natl Acad Sci U S A 112:E5608-17
Geng, Jie; Pogozheva, Irina D; Mosberg, Henry I et al. (2015) Use of Functional Polymorphisms To Elucidate the Peptide Binding Site of TAP Complexes. J Immunol 195:3436-48
Deffit, Sarah N; Blum, Janice S (2015) A central role for HSC70 in regulating antigen trafficking and MHC class II presentation. Mol Immunol 68:85-8
Raghavan, Malini; Geng, Jie (2015) HLA-B polymorphisms and intracellular assembly modes. Mol Immunol 68:89-93
Wijeyesakere, Sanjeeva J; Rizvi, Syed M; Raghavan, Malini (2013) Glycan-dependent and -independent interactions contribute to cellular substrate recruitment by calreticulin. J Biol Chem 288:35104-16
Raghavan, Malini; Wijeyesakere, Sanjeeva J; Peters, Larry Robert et al. (2013) Calreticulin in the immune system: ins and outs. Trends Immunol 34:13-21

Showing the most recent 10 out of 27 publications