Fas (CD95) is of principal importance to normal functioning of the immune system, as evidenced by the marked dysregulation of autoreactive B cells and accompanying autoantibody formation that characterize Fas-deficient animals. The sensitivity of B cells to Fas-mediated apoptosis is regulated by specific receptor signals, in which surface immunoglobulin engagement, and IL-4R engagement, produce a state of Fas-resistance. Modulation of susceptibility to Fas killing suggests a system that protects B cells during critical interactions with FasL-bearing, activated T cells, but that can contribute to the survival of autoreactive B cells when activated inappropriately.
F AIM i s a completely novel, evolutionarily conserved gene product that is induced by stimuli that produce Fas-resistance and that functions as a Fas Apoptosis Inhibitory Molecule. The broad, long term objective of this work is to understand the role of inducible Fas-resistance in B cell homeostasis, and immune activity. The specific goal is to determine the means by which FAIM produces Fas-resistance and the consequences of FAIM-induced Fas-resistance for serological autoreactivity and immune responsiveness. This will be accomplished through 3 specific aims. 1. Determine the point at which Fas-triggered signaling for B cell death is interrupted by FAIM, by assessing the activation and activity of specific caspases, monitoring pre-caspase events in the Fas pathway, and immunoprecipitating a FAIM-associated protein. 2. Identify the regions and residues of FAIM responsible for Fas-resistance, by truncating and mutating faim and correlating structural changes with anti-apoptotic function. 3. Evaluate the role of FAIM in directing autoreactive B cell dysfunction by producing FAIM-overexpressing transgenic mice combined with screening for autoantibody formation and evaluation of mixed bone marrow chimeras, and by examining mice that overexpress both FAIM and Bcl-XL, and that express FAIM on an MRL background. Because FAIM has no substantial regions of homology with any other defined sequence, the studies described herein are expected to identify a novel mammalian motif and strategy for regulating Fas-induced cell death, which may then become a target for therapeutic manipulation to enhance desired immune responses, such as anti- tumor immunity, and to diminish unwanted immune responses, such as autoimmune dyscrasias.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Immunological Sciences Study Section (IMS)
Program Officer
Deckhut Augustine, Alison M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Boston Medical Center
United States
Zip Code
Foote, Linda C; Evans, John W; Cifuni, Justin M et al. (2004) Interleukin-4 produces a breakdown of tolerance in vivo with autoantibody formation and tissue damage. Autoimmunity 37:569-77
Mizuno, Takuya; Rothstein, Thomas L (2003) Cutting edge: CD40 engagement eliminates the need for Bruton's tyrosine kinase in B cell receptor signaling for NF-kappa B. J Immunol 170:2806-10
Mizuno, T; Zhong, X; Rothstein, T L (2003) Fas-induced apoptosis in B cells. Apoptosis 8:451-60
Schram, Brian R; Rothstein, Thomas L (2003) NF-kappa B is required for surface Ig-induced Fas resistance in B cells. J Immunol 170:3118-24
Irigoyen, Macarena; Mizuno, Takuya; Zhong, Xuemei et al. (2002) B cell activation leads to upregulated expression of the murine Sik-similar protein gene. Mol Immunol 38:861-6
Tumang, Joseph R; Negm, Robert S; Solt, Laura A et al. (2002) BCR engagement induces Fas resistance in primary B cells in the absence of functional Bruton's tyrosine kinase. J Immunol 168:2712-9
Zhong, X; Schneider, T J; Cabral, D S et al. (2001) An alternatively spliced long form of Fas apoptosis inhibitory molecule (FAIM) with tissue-specific expression in the brain. Mol Immunol 38:65-72
Rothstein, T L; Zhong, X; Schram, B R et al. (2000) Receptor-specific regulation of B-cell susceptibility to Fas-mediated apoptosis and a novel Fas apoptosis inhibitory molecule. Immunol Rev 176:116-33
Rothstein, T L (2000) Inducible resistance to Fas-mediated apoptosis in B cells. Cell Res 10:245-66