Borrelia burgdorferi (Bb), the Lyme disease spirochete, undergoes dramatic adaptive changes as it cycles in nature between its diverse tick and mammalian hosts. Prior to work conducted by the principle investigator over the past funding interval, little was known regarding the genetic regulatory networks that modulate Bb's adaptive changes contributing to Bb's infectivity and virulence. To this end, we discovered a novel regulatory pathway in Bb, wherein one alternative sigma factor (CN, RpoN) regulates the expression of another alternative sigma factor (Cs, RpoS) that, in turn, governs the expression of key membrane lipoproteins associated with Bb's virulence. The pathway is controlled by an enhancer-binding protein, response regulator protein-2 (Rrp2), which first must be activated for the subsequent activation of RpoN and the consequent transcription of rpoS. Although the discovery of this regulatory network in Bb has represented an important advance in the Lyme disease field, it also has prompted many new questions regarding its direct and indirect regulatory effects, how the pathway intersects with other regulatory mechanisms, and how and to what extents various genes of Bb are influenced. Selected areas of investigation over the next funding interval will continue to address some of these salient information gaps. Accordingly, the Specific Aims of this proposal are: (1) To discern those genes directly influenced by the RpoN-RpoS pathway. We shall combine our expertise in Bb microarrays with our newly developed lac repressor/operator system to artificially control the expression of rpoS in Bb. Identified genes will become the subject of further studies (Aim 4);(2) To investigate the mechanism by which the RpoN-RpoS pathway regulates atypical expression of the decorin-binding protein (DbpB/A) operon. The dbpBA operon is under the control of the RpoN-RpoS pathway, but it has an expression pattern different from other genes controlled by RpoS (e.g., ospC). As such, dbpBA may be a model of how certain genes influenced by the pathway also are subjected to another layer of regulation. Emphasis will be placed on analyzing key features of the dbpBA promoter and upstream cis-elements;(3) To examine the expression of rpoS over the complete enzootic life cycle (tick and mammalian phases) of Bb;and (4) To examine the phenotypes of Bb mutants deficient in selected RpoS-dependent genes. These efforts will provide an expanding foundation for further characterizing the novel RpoN-RpoS regulatory network in Bb, and for potentially identifying regulatory and virulence-associated genes that contribute to many aspects of Bb's complex parasitic strategy. Understanding the roles of these genes could lead to new intervention strategies (vaccines, therapeutics) for Lyme disease.

Public Health Relevance

This project seeks to understand better how the Lyme disease bacterium uses a novel method of gene regulation (alternative sigma factor cascade regulatory network) to strategically govern the expression of a number of its virulence traits critical to its transmission between arthropod (tick) and mammalian hosts. Emphasis will be placed on identifying those genes directly controlled by this regulatory network, and in determining their roles in tick transmission, infectivity for mammals, and induction of disease. Understanding the roles of these genes in transmission and pathogenesis processes could lead to new intervention strategies (vaccines, therapeutics) for Lyme disease.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Breen, Joseph J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
Schools of Medicine
United States
Zip Code
Ouyang, Zhiming; Zhou, Jianli; Norgard, Michael V (2016) Evidence that BosR (BB0647) Is a Positive Autoregulator in Borrelia burgdorferi. Infect Immun 84:2566-74
Ouyang, Zhiming; Zhou, Jianli; Norgard, Michael V (2014) Synthesis of RpoS is dependent on a putative enhancer binding protein Rrp2 in Borrelia burgdorferi. PLoS One 9:e96917
Ouyang, Zhiming; Zhou, Jianli; Norgard, Michael V (2014) CsrA (BB0184) is not involved in activation of the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. Infect Immun 82:1511-22
Brautigam, Chad A; Ouyang, Zhiming; Deka, Ranjit K et al. (2014) Sequence, biophysical, and structural analyses of the PstS lipoprotein (BB0215) from Borrelia burgdorferi reveal a likely binding component of an ABC-type phosphate transporter. Protein Sci 23:200-12
Ouyang, Zhiming; Narasimhan, Sukanya; Neelakanta, Girish et al. (2012) Activation of the RpoN-RpoS regulatory pathway during the enzootic life cycle of Borrelia burgdorferi. BMC Microbiol 12:44
Ouyang, Zhiming; Deka, Ranjit K; Norgard, Michael V (2011) BosR (BB0647) controls the RpoN-RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a novel DNA-binding mechanism. PLoS Pathog 7:e1001272
Ouyang, Zhiming; Haq, Shayma; Norgard, Michael V (2010) Analysis of the dbpBA upstream regulatory region controlled by RpoS in Borrelia burgdorferi. J Bacteriol 192:1965-74
Becker, Amy M; Blevins, Jon S; Tomson, Farol L et al. (2010) Invariant NKT cell development requires a full complement of functional CD3 zeta immunoreceptor tyrosine-based activation motifs. J Immunol 184:6822-32
Ouyang, Zhiming; Kumar, Manish; Kariu, Toru et al. (2009) BosR (BB0647) governs virulence expression in Borrelia burgdorferi. Mol Microbiol 74:1331-43
Ouyang, Zhiming; He, Ming; Oman, Tara et al. (2009) A manganese transporter, BB0219 (BmtA), is required for virulence by the Lyme disease spirochete, Borrelia burgdorferi. Proc Natl Acad Sci U S A 106:3449-54

Showing the most recent 10 out of 14 publications